Display options
Share it on

Brain Sci. 2020 Mar 28;10(4). doi: 10.3390/brainsci10040199.

EEG Theta Power Activity Reflects Workload among Army Combat Drivers: An Experimental Study.

Brain sciences

Carolina Diaz-Piedra, María Victoria Sebastián, Leandro L Di Stasi

Affiliations

  1. Mind, Brain, and Behavior Research Center-CIMCYC, University of Granada, Campus de Cartuja s/n, 18071 Granada; Spain.
  2. College of Nursing & Health Innovation, Arizona State University, 550 N. 3rd St., Phoenix, AZ 85004, USA.
  3. University Centre of Defence, Spanish Army Academy [Centro Universitario de la Defensa, Academia General Militar], Ctra. de Huesca, s/n, 50090 Zaragoza, Spain.
  4. Joint Center University of Granada - Spanish Army Training and Doctrine Command (CEMIX UGR-MADOC), C/Gran Via de Colon, 48, 18071 Granada, Spain.

PMID: 32231048 PMCID: PMC7226148 DOI: 10.3390/brainsci10040199

Abstract

We aimed to evaluate the effects of mental workload variations, as a function of the road environment, on the brain activity of army drivers performing combat and non-combat scenarios in a light multirole vehicle dynamic simulator. Forty-one non-commissioned officers completed three standardized driving exercises with different terrain complexities (low, medium, and high) while we recorded their electroencephalographic (EEG) activity. We focused on variations in the theta EEG power spectrum, a well-known index of mental workload. We also assessed performance and subjective ratings of task load. The theta EEG power spectrum in the frontal, temporal, and occipital areas were higher during the most complex scenarios. Performance (number of engine stops) and subjective data supported these findings. Our findings strengthen previous results found in civilians on the relationship between driver mental workload and the theta EEG power spectrum. This suggests that EEG activity can give relevant insight into mental workload variations in an objective, unbiased fashion, even during real training and/or operations. The continuous monitoring of the warfighter not only allows instantaneous detection of over/underload but also might provide online feedback to the system (either automated equipment or the crew) to take countermeasures and prevent fatal errors.

Keywords: EEG; Humvee; brain activity; cognition; driving simulation; neuroergonomics; tank

References

  1. Brain Topogr. 1992 Fall;5(1):17-25 - PubMed
  2. BMJ Open Sport Exerc Med. 2015 Aug 21;1(1): - PubMed
  3. Psychophysiology. 2012 Apr;49(4):574-82 - PubMed
  4. Physiol Behav. 2016 Jan 1;153:91-6 - PubMed
  5. Neuropsychiatr Dis Treat. 2020 Jan 10;16:131-152 - PubMed
  6. Hum Brain Mapp. 2007 Aug;28(8):793-803 - PubMed
  7. Accid Anal Prev. 2016 Jun;91:183-9 - PubMed
  8. Front Behav Neurosci. 2018 Feb 09;12:3 - PubMed
  9. Cereb Cortex. 2013 Dec;23(12):2872-83 - PubMed
  10. J Neural Eng. 2019 Aug 14;16(5):051001 - PubMed
  11. PM R. 2010 May;2(5):438-41 - PubMed
  12. Appl Ergon. 2019 Nov;81:102870 - PubMed
  13. Psychophysiology. 1973 Jul;10(4):431-6 - PubMed
  14. Hum Factors. 2008 Jun;50(3):449-55 - PubMed
  15. Aviat Space Environ Med. 2005 Apr;76(4):344-51 - PubMed
  16. Brain Sci. 2020 Jan 15;10(1): - PubMed
  17. Neurosci Lett. 1994 Mar 14;169(1-2):145-8 - PubMed
  18. J Sci Med Sport. 2018 Nov;21(11):1147-1153 - PubMed
  19. J Sci Med Sport. 2017 Nov;20 Suppl 4:S1-S2 - PubMed
  20. Neurosci Biobehav Rev. 2014 Jul;44:58-75 - PubMed
  21. Neuropsychologia. 2017 Nov;106:7-20 - PubMed
  22. Front Behav Neurosci. 2018 Dec 11;12:311 - PubMed
  23. Front Hum Neurosci. 2019 Mar 19;13:57 - PubMed
  24. Int J Psychophysiol. 2013 Nov;90(2):172-9 - PubMed
  25. J Surg Educ. 2019 Jul - Aug;76(4):1107-1115 - PubMed
  26. J Head Trauma Rehabil. 2009 Jan-Feb;24(1):51-6 - PubMed
  27. Accid Anal Prev. 2017 Dec;109:62-69 - PubMed
  28. Hum Factors. 2001 Fall;43(3):366-80 - PubMed
  29. Curr Opin Neurobiol. 2001 Dec;11(6):739-44 - PubMed
  30. J Clin Neurophysiol. 2018 Nov;35(6):504-509 - PubMed
  31. Brain Topogr. 1990 Summer;2(4):257-67 - PubMed
  32. J Sci Med Sport. 2017 Nov;20 Suppl 2:S1-S3 - PubMed
  33. Biol Psychol. 1977 Mar;5(1):47-82 - PubMed
  34. Appl Ergon. 2019 May;77:92-99 - PubMed
  35. Aviat Space Environ Med. 2007 May;78(5 Suppl):B153-64 - PubMed
  36. Mil Med. 2017 May;182(5):e1782-e1791 - PubMed
  37. Arch Phys Med Rehabil. 2018 Dec;99(12):2659-2661 - PubMed
  38. Int J Psychophysiol. 2017 Jul;117:37-47 - PubMed
  39. Sensors (Basel). 2019 Apr 19;19(8): - PubMed
  40. Psychophysiology. 2015 Jul;52(7):951-6 - PubMed
  41. J Neural Eng. 2016 Jun;13(3):036008 - PubMed
  42. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 - PubMed
  43. Front Neurosci. 2019 Sep 04;13:940 - PubMed
  44. Biol Psychol. 1996 Feb 5;42(3):361-77 - PubMed
  45. Neurosci Biobehav Rev. 2010 Jun;34(7):1015-22 - PubMed
  46. Am J Phys Med Rehabil. 2010 Apr;89(4):336-44 - PubMed
  47. Eur J Appl Physiol. 2009 Feb;105(3):365-72 - PubMed
  48. Hum Factors. 2019 Aug;61(5):763-773 - PubMed
  49. J Safety Res. 2020 Feb;72:213-223 - PubMed
  50. Trends Cogn Sci. 2020 Mar;24(3):208-227 - PubMed
  51. Cereb Cortex. 1997 Jun;7(4):374-85 - PubMed
  52. Front Hum Neurosci. 2018 Dec 18;12:509 - PubMed
  53. Bull World Health Organ. 2008 Aug;86(8):650-2 - PubMed
  54. Aerosp Med Hum Perform. 2016 Sep;87(9):764-71 - PubMed
  55. Int J Psychophysiol. 2018 Jan;123:111-120 - PubMed
  56. Front Psychol. 2014 Dec 02;5:1344 - PubMed
  57. Electroencephalogr Clin Neurophysiol. 1983 Apr;55(4):468-84 - PubMed

Publication Types

Grant support