Display options
Share it on

J Vet Res. 2020 Feb 29;64(1):111-118. doi: 10.2478/jvetres-2020-0015. eCollection 2020 Mar.

Metagenomic Analysis of Acquired Antibiotic Resistance Determinants in the Gut Microbiota of Wild Boars .

Journal of veterinary research

Balázs Libisch, Tibor Keresztény, Zoltán Kerényi, Róbert Kocsis, Rita Sipos, Péter P Papp, Ferenc Olasz

Affiliations

  1. Laboratory of Microbiology, Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre (NARIC), 2100 Gödöll?, Hungary.
  2. Hungarian Dairy Research Institute Ltd., 9200 Mosonmagyaróvár, Hungary.
  3. BIOMI Ltd., 2100 Gödöll?, Hungary.

PMID: 32258807 PMCID: PMC7105989 DOI: 10.2478/jvetres-2020-0015

Abstract

INTRODUCTION: Land application of manure that contains antibiotics and resistant bacteria may facilitate the establishment of an environmental reservoir of antibiotic-resistant microbes, promoting their dissemination into agricultural and natural habitats. The main objective of this study was to search for acquired antibiotic resistance determinants in the gut microbiota of wild boar populations living in natural habitats.

MATERIAL AND METHODS: Gastrointestinal samples of free-living wild boars were collected in the Zemplén Mountains in Hungary and were characterised by culture-based, metagenomic, and molecular microbiological methods. Bioinformatic analysis of the faecal microbiome of a hunted wild boar from Japan was used for comparative studies. Also, shotgun metagenomic sequencing data of two untreated sewage wastewater samples from North Pest (Hungary) from 2016 were analysed by bioinformatic methods. Minimum spanning tree diagrams for seven-gene MLST profiles of 104

RESULTS: In the ileum of a diarrhoeic boar, a dominant

CONCLUSION: The gastrointestinal microbiota of the free-living wild boars examined in this study carried acquired antibiotic resistance determinants that are highly prevalent among domestic livestock populations.

© 2020 B. Libisch et al. published by Sciendo.

Keywords: antibiotic resistance; intestinal microbiota; natural habitat; tetracycline; wild boar

Conflict of interest statement

Conflict of Interest Conflict of Interest Statement: The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. Vet J. 2007 Jul;174(1):176-87 - PubMed
  2. J Bacteriol. 2000 Mar;182(6):1754-6 - PubMed
  3. Curr Opin Microbiol. 2011 Jun;14(3):236-43 - PubMed
  4. Vet Microbiol. 2012 Apr 23;156(1-2):110-8 - PubMed
  5. J Water Health. 2006 Dec;4(4):487-98 - PubMed
  6. Vet Microbiol. 2014 Jan 10;168(1):240-4 - PubMed
  7. mSystems. 2017 May 23;2(3): - PubMed
  8. Comp Immunol Microbiol Infect Dis. 2013 Mar;36(2):161-8 - PubMed
  9. Res Microbiol. 1996 Mar-Apr;147(3):175-82 - PubMed
  10. Nat Microbiol. 2018 Aug;3(8):898-908 - PubMed
  11. Genome Res. 2018 Sep;28(9):1395-1404 - PubMed
  12. J Bacteriol. 2005 Mar;187(6):1923-9 - PubMed
  13. Appl Environ Microbiol. 2009 Feb;75(3):695-702 - PubMed
  14. J Antimicrob Chemother. 2019 Apr 1;74(4):865-876 - PubMed
  15. FEMS Microbiol Ecol. 2017 Mar 1;93(3): - PubMed
  16. Microb Drug Resist. 2018 Jul/Aug;24(6):807-815 - PubMed
  17. Anim Sci J. 2016 Jun;87(6):835-41 - PubMed
  18. PLoS Genet. 2018 Apr 5;14(4):e1007261 - PubMed
  19. Front Microbiol. 2019 Feb 11;10:146 - PubMed
  20. Mol Microbiol. 2006 Jun;60(5):1136-51 - PubMed
  21. Ecohealth. 2018 Jun;15(2):409-425 - PubMed
  22. J Appl Microbiol. 2010 May;108(5):1702-11 - PubMed
  23. Microbiology. 2015 May;161(Pt 5):980-988 - PubMed
  24. J Vet Diagn Invest. 2003 May;15(3):242-52 - PubMed
  25. J Bacteriol. 2002 Dec;184(23):6490-8 - PubMed

Publication Types