Display options
Share it on

Microorganisms. 2020 Apr 03;8(4). doi: 10.3390/microorganisms8040513.

Relationships Between Gut Microbiota, Metabolome, Body Weight, and Glucose Homeostasis of Obese Dogs Fed with Diets Differing in Prebiotic and Protein Content.

Microorganisms

Emmanuelle Apper, Lisa Privet, Bernard Taminiau, Cindy Le Bourgot, Ljubica Svilar, Jean-Charles Martin, Marianne Diez

Affiliations

  1. Tereos, Research and Innovation, 77230 Moussy-le-Vieux, France.
  2. MS Nutrition, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France.
  3. Farah Centre, Department of Food Sciences, University of Liege, 4000 Liège, Belgium.
  4. CRIBIOM, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France.
  5. BioMeT, C2VN, INRA, INSERM, Aix-Marseille University, 13385 Marseille, France.
  6. Nutrition Unit, Department of Animal Production, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium.

PMID: 32260190 PMCID: PMC7232476 DOI: 10.3390/microorganisms8040513

Abstract

Obesity is a major issue in pets and nutritional strategies need to be developed, like promoting greater protein and fiber intake. This study aimed to evaluate the effects of dietary protein levels and prebiotic supplementation on the glucose metabolism and relationships between the gut, microbiota, metabolome, and phenotype of obese dogs. Six obese Beagle dogs received a diet containing 25.6% or 36.9% crude protein, with or without 1% short-chain fructo-oligosaccharide (scFOS) or oligofructose (OF), in a Latin-square study design. Fecal and blood samples were collected for metabolite analysis, untargeted metabolomics, and 16S rRNA amplicon sequencing. A multi-block analysis was performed to build a correlation network to identify relationships between fecal microbiota, metabolome, and phenotypic variables. Diets did not affect energy homeostasis, but scFOS supplementation modulated fecal microbiota composition and induced significant changes of the fecal metabolome. Bile acids and several amino acids were related to glucose homeostasis while specific bacteria gathered in metavariables had a high number of links with phenotypic and metabolomic parameters. It also suggested that fecal aminoadipate and hippurate act as potential markers of glucose homeostasis. This preliminary study provides new insights into the relationships between the gut microbiota, the metabolome, and several phenotypic markers involved in obesity and associated metabolic dysfunctions.

Keywords: amino acids; bile acids; energy homeostasis; metabolome; microbiota; obesity; prebiotic

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. J Vet Intern Med. 2015 Jan;29(1):43-50 - PubMed
  2. Int J Obes (Lond). 2017 Jul;41(7):1099-1105 - PubMed
  3. Sci Rep. 2017 Oct 20;7(1):13670 - PubMed
  4. Obesity (Silver Spring). 2010 Jan;18(1):190-5 - PubMed
  5. J Nutr. 1998 Oct;128(10):1786-93 - PubMed
  6. Br J Nutr. 2009 Sep;102(5):694-702 - PubMed
  7. Am J Clin Nutr. 2008 Oct;88(4):894-9 - PubMed
  8. PLoS One. 2015 May 18;10(5):e0126931 - PubMed
  9. Obesity (Silver Spring). 2012 Apr;20(4):738-47 - PubMed
  10. Diabetes Obes Metab. 2008 Sep;10(10):950-8 - PubMed
  11. Bioinformatics. 2010 Mar 15;26(6):715-21 - PubMed
  12. Appl Environ Microbiol. 2002 Aug;68(8):3673-82 - PubMed
  13. J Nutr. 2009 Sep;139(9):1619-25 - PubMed
  14. Br J Nutr. 2011 Oct;106 Suppl 1:S120-3 - PubMed
  15. FEMS Microbiol Ecol. 2013 May;84(2):332-43 - PubMed
  16. Gut Microbes. 2016 Sep 2;7(5):397-413 - PubMed
  17. J Small Anim Pract. 2004 Jun;45(6):319-24 - PubMed
  18. Ther Adv Endocrinol Metab. 2016 Feb;7(1):24-42 - PubMed
  19. ISME J. 2009 May;3(5):536-48 - PubMed
  20. Am J Clin Nutr. 1984 Feb;39(2):338-42 - PubMed
  21. Int J Obes (Lond). 2014 Dec;38(12):1525-31 - PubMed
  22. Nutrition. 2019 Apr;60:175-184 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H935-45 - PubMed
  24. Diabetes. 2014 Jun;63(6):1914-9 - PubMed
  25. Sci Rep. 2017 Apr 11;7:46337 - PubMed
  26. Nutr Metab (Lond). 2018 Jan 25;15:9 - PubMed
  27. J Anim Physiol Anim Nutr (Berl). 2017 Jun;101 Suppl 1:21-30 - PubMed
  28. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  29. Vet J. 2010 Mar;183(3):294-7 - PubMed
  30. Nature. 2009 Jan 22;457(7228):480-4 - PubMed
  31. Nature. 2012 Oct 4;490(7418):55-60 - PubMed
  32. Cell Metab. 2009 Apr;9(4):311-26 - PubMed
  33. Microb Pathog. 2012 Aug;53(2):100-8 - PubMed
  34. J Anim Physiol Anim Nutr (Berl). 2009 Feb;93(1):113-21 - PubMed
  35. Sci Rep. 2015 Jun 04;5:10604 - PubMed
  36. Domest Anim Endocrinol. 2010 Oct;39(3):194-204 - PubMed
  37. ISME J. 2014 Oct;8(10):2116-30 - PubMed
  38. BMC Med. 2015 Mar 09;13:48 - PubMed
  39. Diabetes. 2007 Jul;56(7):1761-72 - PubMed
  40. J Nutr. 2008 Sep;138(9):1712-8 - PubMed
  41. BMC Vet Res. 2012 Aug 28;8:147 - PubMed
  42. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070-5 - PubMed
  43. J Nutr. 2002 Jun;132(6 Suppl 2):1685S-7S - PubMed
  44. Int J Obes (Lond). 2010 Jun;34(6):1095-8 - PubMed
  45. J Biosci. 2012 Sep;37(4):647-57 - PubMed
  46. Res Vet Sci. 2004 Aug;77(1):41-7 - PubMed
  47. N Engl J Med. 1969 Oct 9;281(15):811-6 - PubMed
  48. Stat Appl Genet Mol Biol. 2005;4:Article32 - PubMed
  49. Br J Nutr. 2014 Apr 14;111(7):1147-61 - PubMed
  50. N Engl J Med. 1977 Jun 16;296(24):1365-71 - PubMed
  51. J Clin Microbiol. 1988 Nov;26(11):2465-6 - PubMed
  52. Eur J Endocrinol. 2015 Apr;172(4):R167-77 - PubMed
  53. J Clin Invest. 2013 Oct;123(10):4309-17 - PubMed
  54. Appl Environ Microbiol. 2012 Jan;78(2):511-8 - PubMed
  55. J Nutr. 2006 Jul;136(7 Suppl):1951S-1954S - PubMed
  56. J Nutr. 2002 Dec;132(12):3721-31 - PubMed
  57. Front Vet Sci. 2019 Jun 27;6:199 - PubMed

Publication Types