Display options
Share it on

Pulm Circ. 2020 Mar 13;10(1):2045894020912937. doi: 10.1177/2045894020912937. eCollection 2020.

Optimization of combined measures of airway physiology and cardiovascular hemodynamics in mice.

Pulmonary circulation

Katrina W Kopf, Julie W Harral, Emily A Staker, Megan E Summers, Irina Petrache, Vitaly Kheyfets, David C Irwin, Susan M Majka

Affiliations

  1. Biological Resource Center, National Jewish Health, Denver, USA.
  2. Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, USA.
  3. Department of Bioengineering, Anschutz Medical Campus University of Colorado, Aurora, USA.
  4. Department of Medicine, Division of Cardiology, Anschutz Medical Campus University of Colorado, Aurora, USA.
  5. Department of Biomedical Research, National Jewish Health, Denver, USA.
  6. Gates Center for Regenerative Medicine and Stem Cell Biology and Cardiology University of Colorado Medical Center, Aurora, USA.

PMID: 32206308 PMCID: PMC7074541 DOI: 10.1177/2045894020912937

Abstract

Pulmonary hypertension may arise as a complication of chronic lung disease typically associated with tissue hypoxia, as well as infectious agents or injury eliciting a type 2 immune response. The onset of pulmonary hypertension in this setting (classified as Group 3) often complicates treatment and worsens prognosis of chronic lung disease. Chronic lung diseases such as chronic obstructive lung disease (COPD), emphysema, and interstitial lung fibrosis impair airflow and alter lung elastance in addition to affecting pulmonary vascular hemodynamics that may culminate in right ventricle dysfunction. To date, functional endpoints in murine models of chronic lung disease have typically been limited to separately measuring airway and lung parenchyma physiology. These approaches may be lengthy and require a large number of animals per experiment. Here, we provide a detailed protocol for combined assessment of airway physiology with cardiovascular hemodynamics in mice. Ultimately, a comprehensive overview of pulmonary function in murine models of injury and disease will facilitate the integration of studies of the airway and vascular biology necessary to understand underlying pathophysiology of Group 3 pulmonary hypertension.

© The Author(s) 2020.

Keywords: Group 3 pulmonary hypertension; airway physiology; cardiovascular hemodynamics; vascular remodeling

References

  1. Am J Respir Crit Care Med. 2013 Oct 1;188(7):820-30 - PubMed
  2. Proc Am Thorac Soc. 2011 Nov;8(6):516-21 - PubMed
  3. Am J Physiol Heart Circ Physiol. 2018 Apr 1;314(4):H733-H752 - PubMed
  4. Circulation. 2008 Mar 18;117(11):1436-48 - PubMed
  5. Clin Rheumatol. 2003 Sep;22(3):196-202 - PubMed
  6. Rheumatology (Oxford). 2006 Oct;45 Suppl 3:iii26-7 - PubMed
  7. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3958-63 - PubMed
  8. Chest. 2012 Jan;141(1):222-231 - PubMed
  9. Orphanet J Rare Dis. 2017 Apr 20;12(1):74 - PubMed
  10. J Clin Invest. 2017 Jun 1;127(6):2262-2276 - PubMed
  11. J Am Coll Cardiol. 2004 Jun 16;43(12 Suppl S):25S-32S - PubMed
  12. Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1625-30 - PubMed
  13. Circulation. 1998 Sep 8;98(10):1015-21 - PubMed
  14. Am J Respir Crit Care Med. 2007 Dec 15;176(12):1208-14 - PubMed
  15. Respir Res. 2006 May 25;7:82 - PubMed
  16. Arthritis Res Ther. 2015 Nov 19;17:332 - PubMed
  17. Eur Respir J. 2003 May;21(5):892-905 - PubMed
  18. J Cardiothorac Vasc Anesth. 1992 Dec;6(6):651-7 - PubMed
  19. J Exp Med. 2018 Aug 6;215(8):2175-2195 - PubMed
  20. J Appl Physiol (1985). 2018 Feb 1;124(2):283-290 - PubMed
  21. Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7485-90 - PubMed
  22. Circ Res. 2014 Jun 20;115(1):165-75 - PubMed
  23. Am J Respir Crit Care Med. 2015 Oct 15;192(8):998-1008 - PubMed
  24. F1000Prime Rep. 2015 Jan 05;7:06 - PubMed
  25. Am J Respir Crit Care Med. 2018 Sep 15;198(6):707-709 - PubMed
  26. Vet Anaesth Analg. 2015 May;42(3):242-9 - PubMed
  27. Sci Rep. 2018 Jan 22;8(1):1363 - PubMed
  28. Hum Pathol. 2009 Apr;40(4):542-51 - PubMed
  29. Am J Respir Crit Care Med. 2007 Dec 15;176(12):1200-7 - PubMed
  30. Medicine (Baltimore). 2016 Oct;95(40):e5095 - PubMed
  31. Front Immunol. 2019 Jan 24;10:27 - PubMed
  32. Curr Opin Pulm Med. 2003 Mar;9(2):131-8 - PubMed
  33. Am J Respir Crit Care Med. 2004 Aug 1;170(3):207-9 - PubMed
  34. Arthritis Rheumatol. 2016 Apr;68(4):1004-12 - PubMed
  35. Clin Chest Med. 2001 Sep;22(3):385-91, vii - PubMed
  36. Ann Biomed Eng. 1992;20(1):41-62 - PubMed
  37. J Exp Med. 2008 Feb 18;205(2):361-72 - PubMed
  38. Ann Transplant. 2000;5(3):8-12 - PubMed
  39. QJM. 2014 Jul;107(7):515-9 - PubMed
  40. Chest. 2002 Dec;122(6 Suppl):298S-301S - PubMed
  41. APMIS. 1998 Jun;106(6):651-6 - PubMed
  42. Nat Protoc. 2008;3(9):1422-34 - PubMed
  43. Am J Respir Crit Care Med. 2007 Jun 15;175(12):1259-65 - PubMed
  44. Clin Med Insights Circ Respir Pulm Med. 2016 Jan 24;9(Suppl 1):111-21 - PubMed
  45. Chest. 2012 Jul;142(1):200-207 - PubMed
  46. Curr Ther Res Clin Exp. 2011 Oct;72(5):195-203 - PubMed
  47. Arthritis Res Ther. 2016 Feb 05;18:36 - PubMed
  48. Exp Anim. 2015;64(1):57-64 - PubMed
  49. Ann Am Thorac Soc. 2014 Apr;11 Suppl 3:S178-85 - PubMed
  50. Chest. 2005 May;127(5):1480-2 - PubMed

Publication Types

Grant support