Display options
Share it on

J Am Stat Assoc. 2019;114(528):1505-1517. doi: 10.1080/01621459.2019.1574582. Epub 2019 Apr 30.

Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions.

Journal of the American Statistical Association

Zhengwu Zhang, Maxime Descoteaux, David B Dunson

Affiliations

  1. Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY.
  2. Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC.
  3. Department of Statistical Science, Duke University, Durham, NC.

PMID: 32265576 PMCID: PMC7138131 DOI: 10.1080/01621459.2019.1574582

Abstract

In studying structural inter-connections in the human brain, it is common to first estimate fiber bundles connecting different regions relying on diffusion MRI. These fiber bundles act as highways for neural activity. Current statistical methods reduce the rich information into an adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, developing flexible models for characterizing the population distribution of fibers between brain regions of interest within and across different individuals. We start by decomposing each fiber into a rotation matrix, shape and translation from a global reference curve. These components are viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To nonparametrically model the distribution within and across individuals, we rely on a hierarchical mixture of product kernels specific to the component spaces. Taking a Bayesian approach to inference, we develop efficient methods for posterior sampling. The approach automatically produces clusters of fibers within and across individuals. Applying the method to Human Connectome Project data, we find interesting relationships between brain fiber geometry and reading ability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Keywords: Brain connectomics; Connectome geometry; Functional data analysis; Mixture model; Shape analysis

References

  1. J Cogn Neurosci. 2014 Jan;26(1):96-106 - PubMed
  2. J Neurosci. 2015 Apr 15;35(15):6020-7 - PubMed
  3. Neuroimage. 2012 Jul 16;61(4):1153-64 - PubMed
  4. IEEE Trans Pattern Anal Mach Intell. 2011 Jul;33(7):1415-28 - PubMed
  5. Neuroimage. 2013 Oct 15;80:62-79 - PubMed
  6. J Am Stat Assoc. 2014 Oct;109(508):1481-1494 - PubMed
  7. Neuroimage. 2015 Aug 15;117:124-40 - PubMed
  8. Nature. 2016 Aug 11;536(7615):171-178 - PubMed
  9. Cereb Cortex. 2008 Oct;18(10):2352-7 - PubMed
  10. Neuroimage. 2013 Oct 15;80:426-44 - PubMed
  11. Med Image Comput Comput Assist Interv. 2012;15(Pt 3):123-30 - PubMed
  12. Neuroimage. 2013 Oct 15;80:397-404 - PubMed
  13. Science. 2013 Nov 1;342(6158):1238411 - PubMed
  14. Biometrics. 2017 Dec;73(4):1082-1091 - PubMed
  15. Neuroimage. 2018 May 15;172:130-145 - PubMed
  16. Biometrika. 2010 Dec;97(4):851-865 - PubMed
  17. J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482 - PubMed
  18. Brain. 2009 Aug;132(Pt 8):2036-47 - PubMed
  19. IEEE Trans Med Imaging. 2009 Feb;28(2):269-86 - PubMed
  20. Neuroimage. 2014 Sep;98:266-78 - PubMed
  21. J Am Stat Assoc. 2011 Dec 1;106(496):1528-1539 - PubMed
  22. Front Neuroinform. 2014 Feb 21;8:8 - PubMed
  23. Neuroimage. 2012 Sep;62(3):1924-38 - PubMed
  24. J Alzheimers Dis. 2014;39(1):71-8 - PubMed
  25. Neuroimage. 2006 Jul 1;31(3):968-80 - PubMed
  26. Neuroimage. 2012 Oct 1;62(4):2222-31 - PubMed
  27. Psychon Bull Rev. 1996 Mar;3(1):21-36 - PubMed
  28. J Multivar Anal. 2012 Oct 1;111:1-19 - PubMed
  29. Nat Neurosci. 2015 Nov;18(11):1546-55 - PubMed
  30. Biometrika. 2009;96(1):149-162 - PubMed

Publication Types

Grant support