Display options
Share it on

Materials (Basel). 2020 Mar 30;13(7). doi: 10.3390/ma13071586.

Soft-Lithography of Polyacrylamide Hydrogels Using Microstructured Templates: Towards Controlled Cell Populations on Biointerfaces.

Materials (Basel, Switzerland)

Andrés Díaz Lantada, Noelia Mazarío Picazo, Markus Guttmann, Markus Wissmann, Marc Schneider, Matthias Worgull, Stefan Hengsbach, Florian Rupp, Klaus Bade, Gustavo R Plaza

Affiliations

  1. Product Development Laboratory, Mechanical Engineering Department, Universidad Politécnica de Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain.
  2. Centre for Biomedical Technology, Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Crta. M40, km. 38, 28223 Pozuelo de Alarcón, Madrid, Spain.
  3. Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

PMID: 32235578 PMCID: PMC7177395 DOI: 10.3390/ma13071586

Abstract

Polyacrylamide hydrogels are interesting materials for studying cells and cell-material interactions, thanks to the possibility of precisely adjusting their stiffness, shear modulus and porosity during synthesis, and to the feasibility of processing and manufacturing them towards structures and devices with controlled morphology and topography. In this study a novel approach, related to the processing of polyacrylamide hydrogels using soft-lithography and employing microstructured templates, is presented. The main novelty relies on the design and manufacturing processes used for achieving the microstructured templates, which are transferred by soft-lithography, with remarkable level of detail, to the polyacrylamide hydrogels. The conceived process is demonstrated by patterning polyacrylamide substrates with a set of vascular-like and parenchymal-like textures, for controlling cell populations. Final culture of amoeboid cells, whose dynamics is affected by the polyacrylamide patterns, provides a preliminary validation of the described strategy and helps to discuss its potentials.

Keywords: biointerfaces; hot-embossing; polyacrylamide hydrogels; polymer microfabrication; soft-lithography; surface patterning

References

  1. Micromachines (Basel). 2016 Oct 11;7(10): - PubMed
  2. Polymers (Basel). 2020 Mar 13;12(3): - PubMed
  3. Methods Cell Biol. 2007;83:29-46 - PubMed
  4. Biophys J. 2000 Jul;79(1):144-52 - PubMed
  5. Nat Commun. 2016 Oct 10;7:13119 - PubMed
  6. Bioinspir Biomim. 2017 Oct 16;12(6):066004 - PubMed
  7. Biomaterials. 2010 Jul;31(21):5536-44 - PubMed
  8. Biotechnol Bioeng. 2013 Nov;110(11):3048-58 - PubMed
  9. Sci Rep. 2018 Aug 10;8(1):11991 - PubMed
  10. Chem Commun (Camb). 2012 Feb 1;48(10):1595-7 - PubMed
  11. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):10992-6 - PubMed
  12. Biomaterials. 2007 Dec;28(34):5087-92 - PubMed
  13. Acta Biomater. 2020 Jan 1;101:1-13 - PubMed
  14. J Vis Exp. 2015 Mar 25;(97): - PubMed
  15. Biophys J. 2008 Dec 15;95(12):6044-51 - PubMed
  16. Bioinformatics. 2016 Mar 15;32(6):955-7 - PubMed
  17. Nanomaterials (Basel). 2019 Jan 18;9(1): - PubMed
  18. Nat Protoc. 2007;2(6):1307-16 - PubMed
  19. J Am Chem Soc. 2003 Oct 29;125(43):12988-9 - PubMed
  20. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10020-5 - PubMed
  21. Biofabrication. 2019 Jul 11;11(4):045008 - PubMed
  22. PLoS One. 2013 Sep 24;8(9):e75537 - PubMed

Publication Types

Grant support