Display options
Share it on

J Forensic Sci. 2020 Jul;65(4):1085-1093. doi: 10.1111/1556-4029.14312. Epub 2020 Mar 16.

Volatile Organic Compounds, Spectral Characterization and Morphology of Ammonium Nitrate Fuel Oil (ANFO) Samples.

Journal of forensic sciences

Andrea Y Garzón-Serrano, César A Sierra, Oscar Rodríguez-Bejarano, Diana Sinuco

Affiliations

  1. Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Macromoléculas (Macromolecules Research Group), Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá, Colombia.
  2. Facultad de Ciencias, Departamento de Química, Bioprospección de Compuestos Volátiles (Volatile Compounds Bioprospecting), Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá, Colombia.
  3. Facultad de Ciencias, Departamento de Química, Grupo de Electroquímica y Termodinámica Computacional (Electrochemistry and Computational Thermodynamics Group), Universidad Nacional de Colombia, Sede Bogotá, Ciudad Universitaria, Bogotá, Colombia.

PMID: 32176825 DOI: 10.1111/1556-4029.14312

Abstract

Ammonium nitrate fuel oil is an explosive mixture found in most antipersonnel landmines (APL) buried throughout the Colombian territory. During more than 50 years of internal conflict, the Colombian government has found that trained dogs are the most effective method to detect APL. However, the olfactive signature in ANFO is unknown and also if there are differences in detection related to the explosive manufacturing origin. Therefore, this work begins with the analytical validation of the method used to determine ammonia, in its derivatized form as carbamate, released by home-made ANFO using HS-SPME-GC-FID. Once validated, the method was used to identify ammonia and other organic volatile compounds present in ANFO, under laboratory and simulated field conditions. The validation process includes the evaluation of the optimum conditions for the derivation and extraction of butylcarbamate, the determination of the working ranges with linear response in FID, the limits of detection and quantification, the sensitivity, and the precision. The results of the validation established linearity and sensitivity in a concentration between 20 and 120 mg/L, as well as low limits of detection and quantification of 6.4 and 21.4 mg/L, respectively. Also, an intermediate precision of 11% for butylcarbamate with a repeatability of 8%. The validated method showed in real samples of home-made ANFO besides ammonia, the presence of low molecular methylamines, and also exhibited differences in volatile compositions according to the origin. The objective of this work is to offer a reliable analytical methodology for the extraction and analysis of volatile compounds from ANFO.

© 2020 American Academy of Forensic Sciences.

Keywords: ANFO; GC-FID; HS-SPME; ammonia detection; ammonium nitrate fuel oil; morphology; spectral characterization

References

  1. Cardona L, Jiménez J, Vanegas N. Landmine detection technologies to face the demining problem in Antioquia. DYNA 2014;81(183):115-25. - PubMed
  2. Lubrano AL, Andrews B, Hammond M, Collins GE, Rose-Pehrsson SL. Analysis of ammonium nitrate headspace by on-fiber solid phase microextraction derivatization with gas chromatography mass spectrometry. J Chromatogr A 2016;1429:8-12. - PubMed
  3. DeGreeff LE, Malito M, Katilie CJ, Brandon A, Conroy MW, Peranich K, et al. Passive delivery of mixed explosives vapor from separated components. Forensic Chem 2017;4:19-31. - PubMed
  4. Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater 1999;67(3):253-81. - PubMed
  5. DeGreeff LE, Rose-Pehrsson SL, Malito M, Katilie CJ. Analytical support, characterization and optimization of a canine training aid delivery system: phase 2. Washington, DC: Naval Research Laboratory, 2016; Report No.: NRL/MR/6180-16-9657. - PubMed
  6. Brown H, Kirkbride KP, Pigou PE, Walker GS. New developments in SPME part 2: analysis of ammonium nitrate-based explosives. J Forensic Sci 2004;49(2):215-21. - PubMed
  7. Rubio L, Sanllorente S, Sarabia LA, Ortiz MC. Optimization of a headspace solid-phase microextraction and gas chromatography / mass spectrometry procedure for the determination of aromatic amines in water and in polyamide spoons. Chemometr Intell Lab Syst 2014;133:121-35. - PubMed
  8. Szulejko JE, Kim KH. A review of sampling and pretreatment techniques for the collection of airborne amines. Trends Analyt Chem 2014;57:118-34. - PubMed
  9. Kataoka H. Derivatization reactions for the determination of amines by gas chromatography and their applications in environmental analysis. J Chromatogr A 1996;733:19-34. - PubMed
  10. Steinkamp FL, Giordano B, Collins G, Rose-Pehrsson SL. Volatile emissions of ammonium nitrate under flowing conditions. Propellants Explos Pyrotech 2015;40(5):682-7. - PubMed
  11. Majedi SM, Lee HK. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles. J Chromatogr A 2017;1486:86-95. - PubMed
  12. Balasubramanian S, Panigrahi S. Solid-phase microextraction (SPME) techniques for quality characterization of food products: a review. Food Bioproc Tech 2011;4(1):1-26. - PubMed
  13. Farajzadeh MA, Nouri N, Khorram P. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. Trends Analyt Chem 2014;55:14-23. - PubMed
  14. Tankiewicz M, Morrison C, Biziuk M. Application and optimization of headspace Solid-Phase microextraction (HS-SPME) coupled with gas chromatography - flame-Ionization Detector (GC-FID) to determine products of the petroleum industry in aqueous samples. Microchem J 2013;108:117-23. - PubMed
  15. Qu X, Wu CFJ. One-factor-at-a-time designs of resolution V. J Stat Plan Interfence 2005;131(2):407-16. - PubMed
  16. Ríos Acevedo JJ, Polo Díez L, Kayali Sayadi N. Nuevos desarrollos metodológicos en SPME [New methodological developments for SPME] [dissertation]. Madrid, Spain: Universidad Complutense de Madrid, 2017. - PubMed
  17. Bridle HL, Heringa MB, Schäfer AI. Solid-phase microextraction to determine micropollutant-macromolecule partition coefficients. Nat Protoc 2016;11(8):1328-44. - PubMed
  18. Gorecki T, Pawliszyn J. Effect of sample volume on quantitative analysis by solid-phase microextraction. Part 1. Theoretical considerations. Analyst 1997;122(10):1079-86. - PubMed
  19. Pawliszyn J. Theory of solid-phase microextraction. In: Pawliszyn J, editor. Handbook of solid phase microextraction. Amsterdam, Netherlands: Elsevier, 2012;13-59. - PubMed
  20. Boyaci E, Rodríguez-Lafuente A, Gorynski K, Mirnaghi F, Souza-Silva EA, Hein D, et al. Sample preparation with solid phase microextraction and exhaustive extraction approaches: comparison for challenging cases. Anal Chim Acta 2015;873:14-30. - PubMed
  21. Zhang Z, Pawliszyn J. Headspace solid-phase microextraction. Anal Chem 1993;65(14):1843-52. - PubMed
  22. Konieczka P, Namiesnik J. Quality assurance and quality control in the analytical chemical laboratory. A practical approach, 2nd edn. Boca Raton, FL: CRC Press, 2018;170-4. - PubMed
  23. Green JM. A practical guide to analytical method validation. Anal Chem News Featur 1996;2:305-9. - PubMed
  24. Suppajariyawat P, Elie M, Baron M, Gonzalez-Rodríguez J. Classification of ANFO samples based on their fuel composition by GC-MS and FTIR combined with chemometrics. Forensic Sci Int 2019;301:415-25. - PubMed
  25. Lotspeich E, Petr V. The characterization of ammonium nitrate mini-prills. In: Song B, Casem D, Kimberley J, editors. Dynamic behavior of materials. Vol. 1. Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics. New York, NY: Springer International Publishing, 2015;319-24. - PubMed
  26. Taylor P, Kwok QSM, Kruus P, Jones DEG. Wettability of ammonium nitrate prills. Energ Mater 2004;22(3):127-50. - PubMed
  27. Biessikirski A, Kuterasiński L, Dworzak M, Pyra J, Twardosz M. Comparison of structure, morphology, and topography of fertilizer-based explosives applied in the mining industry. Microchem J 2019;144:39-44. - PubMed
  28. Thompson AP, Shan TR. Reactive atomistic simulations of shock-induced initiation processes in mixtures of ammonium nitrate and fuel oil. J Phys Conf Ser 2014;500:52046. - PubMed

Publication Types

Grant support