Display options
Share it on

J Clin Med. 2020 Mar 12;9(3). doi: 10.3390/jcm9030776.

Breast Mammographic Density: Stromal Implications on Breast Cancer Detection and Therapy.

Journal of clinical medicine

Patricia Fernández-Nogueira, Mario Mancino, Gemma Fuster, Paloma Bragado, Miquel Prats de Puig, Pere Gascón, Francisco Javier Casado, Neus Carbó

Affiliations

  1. Institut d'Investigacions Biomèdiques Augustí Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
  2. Department of Biochemistry and Molecular Biomedicine, University of Barcelona; Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain.
  3. Department of Medicine, University of Barcelona, 08036 Barcelona, Spain.
  4. Department of Biochemistry & Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
  5. Department of Biosciences, Faculty of Sciences and Technology, University of Vic, 08500 Vic, Spain.
  6. Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain.
  7. Head of the Breast Committee, Hospital El Pilar, Quirón salud Group, 08006 Barcelona, Spain.
  8. Director, Chair of Oncology and Multidisciplinary Knowledge, 08036 Barcelona, Spain.

PMID: 32178425 PMCID: PMC7141321 DOI: 10.3390/jcm9030776

Abstract

Current evidences state clear that both normal development of breast tissue as well as its malignant progression need many-sided local and systemic communications between epithelial cells and stromal components. During development, the stroma, through remarkably regulated contextual signals, affects the fate of the different mammary cells regarding their specification and differentiation. Likewise, the stroma can generate tumour environments that facilitate the neoplastic growth of the breast carcinoma. Mammographic density has been described as a risk factor in the development of breast cancer and is ascribed to modifications in the composition of breast tissue, including both stromal and glandular compartments. Thus, stroma composition can dramatically affect the progression of breast cancer but also its early detection since it is mainly responsible for the differences in mammographic density among individuals. This review highlights both the pathological and biological evidences for a pivotal role of the breast stroma in mammographic density, with particular emphasis on dense and malignant stromas, their clinical meaning and potential therapeutic implications for breast cancer patients.

Keywords: ductal carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), breast cancer detection; mammographic density; therapy resistance; tumour stroma

References

  1. BMC Cancer. 2014 Dec 15;14:955 - PubMed
  2. Oncotarget. 2016 May 24;7(21):31550-62 - PubMed
  3. Clin Cancer Res. 2020 Mar 15;26(6):1432-1448 - PubMed
  4. Cancer Epidemiol Biomarkers Prev. 2010 Oct;19(10):2488-95 - PubMed
  5. Breast Cancer Res. 2009;11(1):R7 - PubMed
  6. BMC Med. 2008 Apr 28;6:11 - PubMed
  7. CA Cancer J Clin. 2017 Jan;67(1):7-30 - PubMed
  8. Breast Cancer Res. 2013 Dec 17;15(6):R117 - PubMed
  9. Clin Cancer Res. 2013 Nov 1;19(21):5914-26 - PubMed
  10. JNCI Cancer Spectr. 2019 Jan 29;2(4):pky071 - PubMed
  11. Exp Oncol. 2012;34(1):9-16 - PubMed
  12. Pharmacol Ther. 2015 Mar;147:63-79 - PubMed
  13. Breast Cancer Res. 2012 Jul 12;14(4):R104 - PubMed
  14. Breast Cancer Res. 2011;13(6):223 - PubMed
  15. Int J Cancer. 2008 Aug 15;123(4):967-71 - PubMed
  16. Breast Cancer. 2018 May;25(3):259-267 - PubMed
  17. BMC Cancer. 2015 Feb 25;15:82 - PubMed
  18. Cancer Biol Ther. 2012 Feb 1;13(3):123-9 - PubMed
  19. Cancer Res. 2016 Nov 15;76(22):6495-6506 - PubMed
  20. Breast Cancer Res. 2006;8(3):R30 - PubMed
  21. Breast Cancer Res. 2015 Jun 04;17:79 - PubMed
  22. J Clin Oncol. 2013 Jun 20;31(18):2249-56 - PubMed
  23. Semin Cell Dev Biol. 2010 Feb;21(1):11-8 - PubMed
  24. Cell. 2005 May 6;121(3):335-48 - PubMed
  25. Eur J Cancer. 2018 Jan;88:48-56 - PubMed
  26. Breast Cancer Res Treat. 2018 Oct;171(3):767-776 - PubMed
  27. Int J Mol Sci. 2018 Oct 04;19(10): - PubMed
  28. Breast. 2017 Feb;31:274-283 - PubMed
  29. Breast Cancer Res. 2008;10(1):201 - PubMed
  30. Breast Cancer Res. 2018 Aug 9;20(1):92 - PubMed
  31. Oncotarget. 2017 Jan 17;8(3):5578-5591 - PubMed
  32. Oncol Rep. 2019 Feb;41(2):839-852 - PubMed
  33. Epidemiol Rev. 1987;9:146-74 - PubMed
  34. Breast Cancer Res Treat. 2014 Jul;146(2):273-85 - PubMed
  35. Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):212-6 - PubMed
  36. Cancers (Basel). 2015 Dec 11;7(4):2443-58 - PubMed
  37. Clin Obstet Gynecol. 2016 Jun;59(2):419-38 - PubMed
  38. Front Med. 2016 Mar;10(1):33-40 - PubMed
  39. JAMA Intern Med. 2013 May 13;173(9):807-16 - PubMed
  40. J Am Coll Radiol. 2018 Mar;15(3 Pt A):408-414 - PubMed
  41. J Natl Cancer Inst. 2003 Jan 1;95(1):30-7 - PubMed
  42. Radiology. 2017 May;283(2):361-370 - PubMed
  43. Cancer Discov. 2012 Sep;2(9):826-39 - PubMed
  44. JNCI Cancer Spectr. 2018 Nov;2(4):pky072 - PubMed
  45. J Natl Cancer Inst. 2011 May 4;103(9):744-52 - PubMed
  46. N Engl J Med. 2019 Nov 28;381(22):2091-2102 - PubMed
  47. Breast Cancer Res. 2005;7(5):R605-8 - PubMed
  48. Semin Cell Dev Biol. 2010 Feb;21(1):2-10 - PubMed
  49. Cancer Epidemiol Biomarkers Prev. 2018 Sep;27(9):1065-1074 - PubMed
  50. Cell Adh Migr. 2012 May-Jun;6(3):249-60 - PubMed
  51. Horm Cancer. 2018 Apr;9(2):117-127 - PubMed
  52. Clin Cancer Res. 2013 Sep 15;19(18):4972-4982 - PubMed
  53. Mod Pathol. 2019 Jul;32(7):896-915 - PubMed
  54. Curr Med Chem. 2018;25(29):3414-3434 - PubMed
  55. Cancer J. 2015 Jul-Aug;21(4):250-3 - PubMed
  56. Am J Pathol. 2007 Jun;170(6):1807-16 - PubMed
  57. Adv Pharmacol. 2012;65:45-61 - PubMed
  58. Cell Cycle. 2006 Aug;5(15):1597-601 - PubMed
  59. Clin Cancer Res. 2008 Jul 15;14(14):4584-92 - PubMed
  60. J Transl Med. 2019 Sep 14;17(1):309 - PubMed
  61. Clin Cancer Res. 2008 Jan 15;14(2):339-41 - PubMed
  62. Int J Mol Sci. 2019 Feb 15;20(4): - PubMed
  63. Exp Cell Res. 2010 May 1;316(8):1324-31 - PubMed
  64. Eur Radiol. 2018 Aug;28(8):3176-3184 - PubMed
  65. Breast. 2015 Oct;24(5):532-8 - PubMed
  66. Nat Med. 2011 Mar;17(3):320-9 - PubMed
  67. Am J Physiol Cell Physiol. 2015 Nov 15;309(10):C627-38 - PubMed
  68. Genet Mol Biol. 2014 Sep;37(3):480-9 - PubMed
  69. Ann Intern Med. 2015 May 19;162(10):673-81 - PubMed
  70. Clin Cancer Res. 2017 Apr 1;23(7):1710-1721 - PubMed
  71. Nature. 1983 Jun 30;303(5920):767-70 - PubMed
  72. Trends Pharmacol Sci. 2009 Dec;30(12):624-30 - PubMed
  73. Nat Rev Cancer. 2001 Oct;1(1):46-54 - PubMed
  74. CA Cancer J Clin. 2018 Nov;68(6):394-424 - PubMed
  75. Int J Mol Sci. 2019 May 07;20(9): - PubMed
  76. Mol Carcinog. 2016 Nov;55(11):1489-1502 - PubMed
  77. Br J Cancer. 2011 Jul 26;105(3):346-52 - PubMed
  78. EMBO J. 2019 Jul 15;38(14):e100330 - PubMed
  79. Cancer Causes Control. 2018 Jun;29(6):495-505 - PubMed
  80. Clin Cancer Res. 2003 May;9(5):1639-47 - PubMed
  81. Cancer. 2010 Mar 15;116(6):1526-34 - PubMed
  82. Am Surg. 2018 Jan 1;84(1):1-6 - PubMed
  83. J Clin Pathol. 2017 Feb;70(2):102-108 - PubMed
  84. Breast Cancer Res. 2009;11 Suppl 3:S16 - PubMed

Publication Types

Grant support