Display options
Share it on

Front Neurosci. 2020 Mar 25;14:219. doi: 10.3389/fnins.2020.00219. eCollection 2020.

Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis.

Frontiers in neuroscience

Maja Kesić, Petra Baković, Marina Horvatiček, Bastien Lucien Jean Proust, Jasminka Štefulj, Lipa Čičin-Šain

Affiliations

  1. Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ru?er Boškovi? Institute, Zagreb, Croatia.

PMID: 32269507 PMCID: PMC7109468 DOI: 10.3389/fnins.2020.00219

Abstract

Central and peripheral pools of biogenic monoamine serotonin (5-hydroxytryptamine [5HT]) exert opposite effects on the body weight regulation: increase in brain 5HT activity is expected to decrease body weight, whereas increase in peripheral 5HT activity will increase body weight and adiposity. In a genetic model of rats with constitutionally high- or low-5HT homeostasis (hyperserotonergic/hyposerotonergic rats), we have studied how individual differences in endogenous 5HT tone modulate net energy balance of the organism. The high-5HT and low-5HT sublines of the model were developed by selective breeding toward extreme platelet activities of 5HT transporter, a key molecule determining 5HT bioavailability/activity. In animals from high-5HT and low-5HT sublines, we assessed physiological characteristics associated with body weight homeostasis and expression profile of a large scale of body weight-regulating genes in hypothalamus, a major brain region controlling energy balance. Results showed that under standard chow diet animals from the high-5HT subline, as compared to low-5HT animals, have lifelong increased body weight (by 12%), higher absolute daily food intake (by 9%), and different pattern of fat distribution (larger amount of white adipose tissue and lower amount of brown adipose tissue). A large number of body weight-regulating hypothalamic genes were analyzed for their mRNA expression: 24 genes by reverse transcription-quantitative polymerase chain reaction (

Copyright © 2020 Kesić, Baković, Horvatiček, Proust, Štefulj and Čičin-Šain.

Keywords: body weight homeostasis; energy balance; hypothalamus; obesity; rat model; serotonin transporter

References

  1. PLoS One. 2012;7(3):e32598 - PubMed
  2. Metabolism. 2018 Aug;85:325-339 - PubMed
  3. Behav Brain Res. 2005 Dec 7;165(2):271-7 - PubMed
  4. Biol Psychiatry. 1998 Dec 1;44(11):1090-8 - PubMed
  5. PLoS Biol. 2009 Oct;7(10):e1000229 - PubMed
  6. Cell Metab. 2012 Nov 7;16(5):588-600 - PubMed
  7. Cell Metab. 2015 Dec 1;22(6):962-70 - PubMed
  8. J Comp Neurol. 1959 Dec;113:389-400 - PubMed
  9. Endocr Regul. 2017 Jan 1;51(1):52-70 - PubMed
  10. Behav Brain Res. 2015 Jan 15;277:14-31 - PubMed
  11. Reprod Toxicol. 2012 Aug;34(1):101-9 - PubMed
  12. Front Endocrinol (Lausanne). 2014 Feb 24;5:18 - PubMed
  13. Minerva Endocrinol. 2017 Sep;42(3):248-270 - PubMed
  14. J Neuroendocrinol. 2004 Dec;16(12):980-8 - PubMed
  15. J Neuroendocrinol. 2004 Jul;16(7):637-44 - PubMed
  16. Nature. 2016 Sep 29;537(7622):680-684 - PubMed
  17. J Neuroendocrinol. 2015 Jun;27(6):389-98 - PubMed
  18. Physiol Behav. 2008 Mar 18;93(4-5):724-32 - PubMed
  19. Front Cell Neurosci. 2017 Sep 20;11:277 - PubMed
  20. Eur J Nucl Med Mol Imaging. 2016 Jun;43(6):1096-104 - PubMed
  21. J Exp Biol. 2016 Jan;219(Pt 2):259-65 - PubMed
  22. Obes Res. 2002 Nov;10(11):1188-96 - PubMed
  23. Sci Rep. 2017 Apr 25;7(1):1137 - PubMed
  24. Behav Brain Res. 2010 Dec 1;213(2):238-45 - PubMed
  25. Elife. 2017 Jun 20;6: - PubMed
  26. Neuropharmacology. 2005 Nov;49(6):798-810 - PubMed
  27. Am J Physiol. 1997 May;272(5 Pt 2):R1365-70 - PubMed
  28. Mol Cells. 2015 Dec;38(12):1023-8 - PubMed
  29. Life Sci. 2005 Jun 10;77(4):452-61 - PubMed
  30. Int J Dev Neurosci. 2015 Nov;46:76-81 - PubMed
  31. Nat Med. 2015 Feb;21(2):166-72 - PubMed
  32. Diabetes Metab J. 2016 Apr;40(2):89-98 - PubMed
  33. Nat Rev Neurosci. 2003 Dec;4(12):1002-12 - PubMed
  34. Neuroscience. 2007 Jun 8;146(4):1662-76 - PubMed
  35. Dis Model Mech. 2016 Apr;9(4):401-12 - PubMed
  36. PLoS One. 2016 Feb 23;11(2):e0150102 - PubMed
  37. Endocr Rev. 1999 Feb;20(1):68-100 - PubMed
  38. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):329-34 - PubMed
  39. Dis Model Mech. 2017 Jun 1;10(6):679-689 - PubMed
  40. Toxicol Appl Pharmacol. 2015 May 15;285(1):32-40 - PubMed
  41. Endocr Rev. 2019 Aug 1;40(4):1092-1107 - PubMed
  42. Neuroimage. 2010 Aug 1;52(1):284-9 - PubMed
  43. BMC Bioinformatics. 2005 Mar 21;6:62 - PubMed
  44. PLoS One. 2017 Feb 9;12(2):e0170886 - PubMed
  45. Mol Endocrinol. 2010 Oct;24(10):1978-87 - PubMed
  46. Sci Rep. 2018 Mar 21;8(1):4924 - PubMed
  47. Neuron. 2006 Jul 20;51(2):239-49 - PubMed
  48. Cell Metab. 2014 May 6;19(5):741-756 - PubMed
  49. Curr Opin Lipidol. 2011 Jun;22(3):186-91 - PubMed
  50. Obesity (Silver Spring). 2010 Jan;18(1):137-45 - PubMed
  51. Clin Sci (Lond). 1999 Feb;96(2):191-7 - PubMed
  52. Pharmacol Biochem Behav. 2010 Nov;97(1):84-91 - PubMed
  53. Am J Physiol Gastrointest Liver Physiol. 2015 Nov 15;309(10):G816-25 - PubMed
  54. Ann N Y Acad Sci. 1990;600:521-30; discussion 530-1 - PubMed
  55. Behav Genet. 2002 Nov;32(6):435-43 - PubMed
  56. Neuropsychopharmacology. 2017 Jan;42(2):427-436 - PubMed
  57. Methods. 2001 Dec;25(4):402-8 - PubMed
  58. Expert Opin Ther Targets. 2015;19(9):1153-70 - PubMed
  59. Nat Rev Neurosci. 2008 Feb;9(2):85-96 - PubMed
  60. Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):412-420 - PubMed
  61. Front Neurosci. 2013 Mar 27;7:36 - PubMed
  62. Nature. 2016 May 11;533(7603):411-5 - PubMed
  63. Nat Commun. 2015 Apr 13;6:6794 - PubMed
  64. Annu Rev Med. 2009;60:355-66 - PubMed
  65. Psychopharmacology (Berl). 2008 Oct;200(2):291-300 - PubMed
  66. Diabetes. 2003 Mar;52(3):682-7 - PubMed
  67. Synapse. 1998 Apr;28(4):313-21 - PubMed

Publication Types