Display options
Share it on

Sci Rep. 2020 Apr 02;10(1):5815. doi: 10.1038/s41598-020-62612-9.

MONOPOL - A traveling-wave magnetic neutron spin resonator for tailoring polarized neutron beams.

Scientific reports

Erwin Jericha, Christoph Gösselsberger, Hartmut Abele, Stefan Baumgartner, Bernhard Maximilian Berger, Peter Geltenbort, Masahiro Hino, Tatsuro Oda, Robert Raab, Gerald Badurek

Affiliations

  1. TU Wien, Atominstitut, Wien, 1020, Austria. [email protected].
  2. TU Wien, Atominstitut, Wien, 1020, Austria.
  3. Institut Laue-Langevin, Grenoble, 38042, France.
  4. Kyoto University, Institute for Integrated Radiation and Nuclear Science, Kumatori, Osaka, 590-0494, Japan.

PMID: 32242088 PMCID: PMC7118124 DOI: 10.1038/s41598-020-62612-9

Abstract

We report on first experimental tests of a neutron magnetic spin resonator at a very cold neutron beam port of the high flux reactor at the ILL Grenoble. When placed between two supermirror neutron polarizers and operated in a pulsed traveling-wave mode it allows to decouple its time- and wavelength-resolution and can therefore be used simultaneously as electronically tunable monochromator and fast beam chopper. As a first 'real' scientific application we intend its implementation in the PERC (p roton and e lectron r adiation c hannel) project related to high-precision experiments in neutron beta decay.

References

  1. Brown, M. A. et al. (UCNA Collaboration). New result for the neutron β -asymmetry parameter A - PubMed
  2. Märkisch, B. et al. Measurement of the Weak Axial-Vector Coupling Constant in the Decay of Free Neutrons Using a Pulsed Cold Neutron Beam. Physical Review Letters 122, 242501 (2019). - PubMed
  3. Beck, M.  et al.  Improved determination of the [Formula: see text] angular correlation coefficient a in free neutron decay with the a SPECT spectrometer, https://arxiv.org/abs/1908.04785 [nucl-ex] (2019). - PubMed
  4. Czarnecki, A., Marciano, W. J. & Sirlin, A.  Radiative corrections to neutron and nuclear beta decays revisited, https://arxiv.org/abs/1907.06737 [hep-ph] (2019). - PubMed
  5. Hayen, L. & Severijns, N.  Radiative corrections to Gamow-Teller decays, https://arxiv.org/abs/1906.09870 [nucl-th] (2019). - PubMed
  6. Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Radiative corrections of order O(αe - PubMed
  7. Chien-YeahSeng, M. J. R.-M. & Gorchtein, M. Dispersive evaluation of the inner radiative correction in neutron and nuclear β decay. Physical Review D 100, 013001 (2019). - PubMed
  8. Tan, W.  Laboratory tests of the normal-mirror particle oscillations and the extended CKM matrix, https://arxiv.org/abs/1906.10262 [hep-ph] (2019) - PubMed
  9. González-Alonso, M., Naviliat-Cuncic, O. & Severijns, N. New physics searches in nuclear and neutron β decay. Progress in Particle and Nuclear Physics 104, 165–223 (2019). - PubMed
  10. Cirgiliano, V.  et al.  Precision beta decay as a probe of new physics, https://arxiv.org/abs/1907.02164 [nucl-ex] (2019). - PubMed
  11. Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Tests of the standard model in neutron beta decay with polarized electrons and unpolarized neutrons and protons. Physical Review D 99, 053004 (2019). - PubMed
  12. Palladino, A. The flavor composition of astrophysical neutrinos after 8 years of IceCube: an indication of neutron decay scenario? European Physical Journal C 79, 500 (2019). - PubMed
  13. Serebrov, A. P. Disagreement between measurements of the neutron lifetime by the ultracold neutron storage method and the beam technique. Physics-Uspekhi 62, 596–601 (2019). - PubMed
  14. Fornal, B. & Grinstein, B. Dark Matter Interpretation of the Neutron Decay Anomaly. Physical Review Letters 120, 191801 (2018). - PubMed
  15. Klopf, M. et al. Constraints on the Dark Matter Interpretation n → χ + e - PubMed
  16. Dubbers, D., Saul, H., Märkisch, B., Soldner, T. & Abele, H. Exotic decay channels are not the cause of the neutron lifetime anomaly. Physics Letters B 791, 6–10 (2019). - PubMed
  17. Ivanov, A. N., Höllweiser, R., Troitskaya, N. I., Wellenzohn, M. & Berdnikov, Y. A. Neutron dark matter decays and correlation coefficients of neutron β - PubMed
  18. Fornal, B. & Grinstein, B. Dark particle interpretation of the neutron decay anomaly. Journal of Physics: Conference Series 1308, 012010 (2019). - PubMed
  19. Vergados, J. D. Searching for light wimps in view of neutron decay to dark matter. Journal of Physics G: Nuclear and Particle Physics 46, 105002 (2019). - PubMed
  20. Kosheleva, O. & Kreinovich, V.  Neutron Lifetime Puzzle and Nuclear Stability: A Possible Relation. Departmental Technical Reports (CS) 1338, University of Texas at El Paso, https://digitalcommons.utep.edu/cs_techrep/1338 (2019). - PubMed
  21. Grinstein, B., Kouvaris, C. & Nielsen, N. G. Neutron Star Stability in Light of the Neutron Decay Anomaly. Physical Review Letters 123, 091601 (2019). - PubMed
  22. Nesvizhevsky, V. V., Gudkov, V., Protasov, K. V., Snow, W. M. & Voronin, A. Y. A new operating mode in experiments searching for free neutron-antineutron oscillations based on coherent neutron and antineutron mirror reflections. EPJ Web of Conferences 191, 01005 (2018). - PubMed
  23. Ejiri, H. & Vergados, J. D. Neutron disappearance inside the nucleus. Journal of Physics G: Nuclear and Particle Physics 46, 025104 (2019). - PubMed
  24. Leontaris, G. K. & Vergados, J. D. [Formula: see text] oscillations and the neutron lifetime. Physical Review D 99, 015010 (2019). - PubMed
  25. Giacosa, F. & Pagliara, G.  Neutron decay anomaly and inverse quantum zeno effect, (2019). - PubMed
  26. Giacosa, F.  Modelling the inverse zeno effect for the neutron decay, https://arxiv.org/abs/1909.01099 [hep-ph] (2019) - PubMed
  27. Wang, X.  et al.  Design of the Magnetic System of the Neutron Decay Facility PERC. EPJ Web of Conferences (2019). - PubMed
  28. Drabkin, G. M. Analysis of Energy Spectrum of Polarized Neutrons with the Aid of a Magnetic Field. Soviet Physics JETP 16, 781–782 (1963). - PubMed
  29. Drabkin, G. M., Trunov, V. A. & Runov, V. B. Static Magnetic Field Analysis of a Polarized Neutron Spectrum. Soviet Physics JETP 27, 194–196 (1968). - PubMed
  30. Agamalian, M. M., Schweizer, J., Otchik, Y. M. & Khavronin, V. P. Optimization of the Drabkin monochromator. Nuclear Instruments and Methods 158, 395–397 (1979). - PubMed
  31. Majkrzak, C. F. & Shirane, G. Polarized Neutron Spectrometer Development and Experiments at Brookhaven. Journal de Physique Colloques 43, 215–220 (1982). - PubMed
  32. Parizzi, A. A., Lee, W.-T. & Klose, F. Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter. Applied Physics A 74, S1498–S1501 (2002). - PubMed
  33. Agamalyan, M. M., Drabkin, G. M. & Sbitnev, V. I. Spatial spin resonance of polarized neutrons. A tunable slow neutron filter. Physics Reports 168, 265–303 (1988). - PubMed
  34. Badurek, G., Kollmar, A., Seeger, A. & Schalt, W. Use of a Drabkin spin resonator in inverted geometry neutron time-of-flight spectroscopy. Nuclear Instruments and Methods A 309, 275–283 (1991). - PubMed
  35. Alefeld, B., Kollmar, A., Badurek, G. & Drabkin, G. M. Space-time focusing of polarized neutrons. Nuclear Instruments and Methods A 306, 300–304 (1991). - PubMed
  36. Yamazaki, D., Soyama, K., Ebisawa, T., Aizawa, K. & Tasaki, S. Pulse shaping by means of spatial neutron spin resonance. Nuclear Instruments and Methods A 529, 204–208 (2004). - PubMed
  37. Yamazaki, D. et al. Chopper mode of Drabkin energy filters for pulsed neutron sources. Physica B 356, 174–177 (2005). - PubMed
  38. Badurek, G. & Jericha, E. Upon the versatility of spatial neutron magnetic spin resonance. Physica B 335, 215–218 (2003). - PubMed
  39. Badurek, G., Gösselsberger, C. & Jericha, E. Design of a pulsed spatial neutron magnetic spin resonator. Physica B 406, 2458–2462 (2011). - PubMed
  40. Gösselsberger, C. et al. Design of a novel pulsed spin resonator for the beta-decay experiment PERC. Physics Procedia 17, 62–68 (2011). - PubMed
  41. Gösselsberger, C. et al. Neutron beam tailoring by means of a novel pulsed spatial magnetic spin resonator. Journal of Physics: Conference Series 340, 012028 (2012). - PubMed
  42. Gösselsberger, C. et al. Wavelength-selected neutron pulses formed by a spatial magnetic neutron spin resonator. Physics Procedia 42, 106–115 (2013). - PubMed
  43. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937). - PubMed
  44. Alvarez, L. W. & Bloch, F. A quantitative determination of the neutron moment in absolute nuclear magnetons. Phys. Rev. 57, 111–122 (1940). - PubMed
  45. Bloch, F. & Siegert, A. Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940). - PubMed
  46. Jericha, E. et al. Neutron detection in the frame of spatial magnetic spin resonance. Nuclear Instruments and Methods in Physics Research A 845, 552–555 (2017). - PubMed
  47. Dubbers, D. et al. A clean, bright, and versatile source of neutron decay products. Nuclear Instruments and Methods in Physics Research A 596, 238–247 (2008). - PubMed
  48. Konrad, G. et al. Neutron Decay with PERC: a Progress Report. Journal of Physics: Conference Series 340, 012048 (2012). - PubMed
  49. Mund, D. et al. Determination of the Weak Axial Vector Coupling λ = g - PubMed
  50. Dubbers, D. Teilchenphysik mit langsamen Neutronen. Physikalische Blätter 45, 133–138 (1989). - PubMed
  51. Severijns, N., Beck, M. & Naviliat-Čunčić, O. Tests of the standard electroweak model in nuclear beta decay. Review of Modern Physics 78, 991–1040 (2006). - PubMed
  52. Abele, H. The neutron. Its properties and basic interactions. Progress in Particle and Nuclear Physics 60, 1–81 (2008). - PubMed
  53. Dubbers, D. & Schmidt, M. G. The neutron and its role in cosmology and particle physics. Review of Modern Physics 83, 1111–1171 (2011). - PubMed
  54. Ramsey-Musolf, M. J. Electric Dipole Moments and the Mass Scale of New t -Violating, p -Conserving Interactions. Physical Review Letters 83, 3997–4000 (1999). - PubMed
  55. Ivanov, A. N., Pitschmann, M. & Troitskaya, N. I. Neutron β - PubMed
  56. Petukhov, A. K. et al. A concept of advanced broad-band solid-state supermirror polarizers for cold neutrons. Nuclear Instruments and Methods in Physics Research A 838, 33–38 (2016). - PubMed
  57. Wang, X., Konrad, G. & Abele, H. R × B drift momentum spectrometer with high resolution and large phase space acceptance. Nuclear Instruments and Methods in Physics Research A 701, 254–261 (2013). - PubMed
  58. Konrad, G.  NoMoS: Beyond the Standard Model Physics in Neutron Decay. PoS (EPS-HEP2015), 592 (2015). - PubMed

Publication Types