Display options
Share it on

J Exp Bot. 2020 Aug 17;71(17):5223-5236. doi: 10.1093/jxb/eraa188.

Epigenetics: possible applications in climate-smart crop breeding.

Journal of experimental botany

Serena Varotto, Eleni Tani, Eleni Abraham, Tamar Krugman, Aliki Kapazoglou, Rainer Melzer, Aleksandra Radanović, Dragana Miladinović

Affiliations

  1. Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell'Università, Padova, Italy.
  2. Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece.
  3. Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece.
  4. Institute of Evolution, University of Haifa, Haifa, Israel.
  5. Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece.
  6. School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland.
  7. Institute of Field and Vegetable Crops, Maksima Gorkog, Serbia.

PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188

Abstract

To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: [email protected].

Keywords: Abiotic stress; DNA methylation; breeding; chromatin; climate-smart; crops; epigenetic changes; small RNA

References

  1. EMBO J. 2016 Jan 18;35(2):162-75 - PubMed
  2. BMC Genomics. 2008 Feb 27;9:103 - PubMed
  3. RNA. 2008 May;14(5):836-43 - PubMed
  4. Plant Cell. 2008 Aug;20(8):2238-51 - PubMed
  5. Sci Rep. 2019 Nov 11;9(1):16434 - PubMed
  6. Sci Rep. 2017 Jan 04;7:39843 - PubMed
  7. Sci Total Environ. 2019 Feb 25;653:91-104 - PubMed
  8. Trends Plant Sci. 2017 Jul;22(7):610-623 - PubMed
  9. PLoS One. 2012;7(11):e49500 - PubMed
  10. Plant Sci. 2015 Jul;236:146-56 - PubMed
  11. BMC Genomics. 2011 Jun 10;12:307 - PubMed
  12. Nucleic Acids Res. 2017 May 19;45(9):5126-5141 - PubMed
  13. Nat Rev Genet. 2010 Mar;11(3):204-20 - PubMed
  14. Plant Cell Physiol. 2014 Nov;55(11):1859-63 - PubMed
  15. Genomics. 2019 Jul;111(4):509-519 - PubMed
  16. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6752-7 - PubMed
  17. Genetics. 2018 Apr;208(4):1443-1466 - PubMed
  18. PLoS Genet. 2019 Sep 16;15(9):e1008370 - PubMed
  19. EMBO J. 2014 Sep 17;33(18):1987-98 - PubMed
  20. Plant Signal Behav. 2017 Mar 4;12(3):e1284724 - PubMed
  21. Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506 - PubMed
  22. Nat Rev Genet. 2017 Sep;18(9):563-575 - PubMed
  23. Plant Physiol. 2014 May 28;165(3):933-947 - PubMed
  24. PLoS One. 2013 Sep 23;8(9):e75597 - PubMed
  25. Genome Biol. 2016 Aug 31;17(1):183 - PubMed
  26. Genetics. 2010 Apr;184(4):1037-50 - PubMed
  27. PLoS One. 2013 Apr 09;8(4):e60364 - PubMed
  28. Protoplasma. 2019 Sep;256(5):1245-1256 - PubMed
  29. Nat Biotechnol. 2015 May;33(5):510-7 - PubMed
  30. Sci Rep. 2018 Jun 19;8(1):9363 - PubMed
  31. BMC Plant Biol. 2011 May 20;11(1):94 - PubMed
  32. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10642-7 - PubMed
  33. Annu Rev Plant Biol. 2010;61:395-420 - PubMed
  34. Nat Rev Genet. 2014 Jun;15(6):394-408 - PubMed
  35. 3 Biotech. 2018 Mar;8(3):172 - PubMed
  36. Ecol Evol. 2013 Feb;3(2):399-415 - PubMed
  37. Mol Plant. 2014 Mar;7(3):472-80 - PubMed
  38. Biochim Biophys Acta. 2012 Feb;1819(2):137-48 - PubMed
  39. Plant Biotechnol J. 2018 Nov;16(11):1836-1847 - PubMed
  40. Breed Sci. 2014 Jun;64(2):125-33 - PubMed
  41. Breed Sci. 2019 Jun;69(2):191-204 - PubMed
  42. Plant Cell. 2014 Dec;26(12):4602-16 - PubMed
  43. Plant Reprod. 2018 Dec;31(4):343-355 - PubMed
  44. Plant Sci. 2013 Sep;210:25-35 - PubMed
  45. Genome Biol. 2017 Aug 16;18(1):155 - PubMed
  46. Genome Biol. 2015 Dec 10;16:273 - PubMed
  47. Curr Opin Plant Biol. 2009 Apr;12(2):133-9 - PubMed
  48. Annu Rev Genet. 2014;48:49-70 - PubMed
  49. Gene. 2006 Aug 15;378:74-83 - PubMed
  50. Plant Physiol. 2017 Nov;175(3):1304-1320 - PubMed
  51. Plant Cell Environ. 2019 Mar;42(3):782-800 - PubMed
  52. Trends Biotechnol. 2013 Sep;31(9):497-504 - PubMed
  53. Cell. 2013 Mar 28;153(1):193-205 - PubMed
  54. Elife. 2016 Sep 28;5: - PubMed
  55. Bioinformatics. 2010 Jan 15;26(2):290-1 - PubMed
  56. PLoS One. 2016 Mar 10;11(3):e0150933 - PubMed
  57. PLoS One. 2016 Jun 17;11(6):e0157522 - PubMed
  58. Plant Cell Environ. 2013 Dec;36(12):2207-18 - PubMed
  59. Plant Biotechnol J. 2020 Jan;18(1):32-44 - PubMed
  60. J Exp Bot. 2016 Mar;67(7):2081-92 - PubMed
  61. Nat Biotechnol. 2013 Mar;31(3):240-6 - PubMed
  62. Gene. 2015 Jan 25;555(2):186-93 - PubMed
  63. Front Plant Sci. 2016 Jun 14;7:817 - PubMed
  64. FEBS J. 2013 Apr;280(7):1717-30 - PubMed
  65. Physiol Mol Biol Plants. 2013 Jul;19(3):379-87 - PubMed
  66. Front Plant Sci. 2015 Nov 19;6:1012 - PubMed
  67. Plant Physiol. 2016 Mar;170(3):1535-48 - PubMed
  68. Sci Rep. 2016 Jul 27;6:30446 - PubMed
  69. Mol Plant. 2013 Mar;6(2):396-410 - PubMed
  70. Genome Biol. 2017 Jun 27;18(1):124 - PubMed
  71. Science. 2014 Mar 7;343(6175):1145-8 - PubMed
  72. PLoS One. 2014 Jun 03;9(6):e98958 - PubMed
  73. Front Plant Sci. 2017 Jun 30;8:1151 - PubMed
  74. Int J Mol Sci. 2019 Aug 01;20(15): - PubMed
  75. BMC Genomics. 2015 Jul 07;16:507 - PubMed
  76. PLoS One. 2015 May 01;10(5):e0124060 - PubMed
  77. Nature. 2014 Mar 6;507(7490):124-128 - PubMed
  78. G3 (Bethesda). 2016 May 03;6(5):1313-26 - PubMed
  79. BMC Plant Biol. 2012 Aug 03;12:132 - PubMed
  80. Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4959-67 - PubMed
  81. J Exp Bot. 2017 Apr 1;68(8):2013-2026 - PubMed
  82. Plant Genome. 2018 Jul;11(2): - PubMed
  83. Epigenetics. 2013 Aug;8(8):864-72 - PubMed
  84. Science. 2010 Oct 29;330(6004):622-7 - PubMed
  85. J Exp Bot. 2016 Feb;67(4):1109-21 - PubMed
  86. J Exp Bot. 2011 Mar;62(6):1951-60 - PubMed
  87. J Genet Genomics. 2011 Sep 20;38(9):419-24 - PubMed
  88. PLoS One. 2012;7(6):e40203 - PubMed
  89. Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20109-14 - PubMed
  90. Science. 2018 Aug 17;361(6403): - PubMed
  91. Plant Cell Physiol. 2018 Oct 1;59(10):2143-2154 - PubMed
  92. Sci Adv. 2016 Feb 19;2(2):e1501340 - PubMed
  93. Methods Mol Biol. 2018;1822:11-37 - PubMed
  94. Funct Integr Genomics. 2017 May;17(2-3):237-251 - PubMed
  95. Sci Rep. 2015 Oct 09;5:14922 - PubMed
  96. Genome Biol. 2016 Sep 27;17(1):194 - PubMed
  97. Nature. 2017 Apr 26;544(7651):427-433 - PubMed
  98. Genetics. 2015 Oct;201(2):779-93 - PubMed
  99. Plant J. 2014 Dec;80(6):1108-17 - PubMed
  100. Plant Cell. 2014 Dec;26(12):4584-601 - PubMed
  101. Cell Mol Life Sci. 2015 Apr;72(7):1261-73 - PubMed
  102. Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12580-12585 - PubMed
  103. Sci Rep. 2017 Jul 5;7(1):4632 - PubMed
  104. Plant Cell Environ. 2019 Jan;42(1):133-144 - PubMed
  105. Planta. 2010 Feb;231(3):705-16 - PubMed
  106. Plant Cell Environ. 2007 Feb;30(2):165-75 - PubMed
  107. Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):2017-22 - PubMed
  108. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9171-6 - PubMed
  109. J Biol Chem. 2002 Oct 4;277(40):37741-6 - PubMed
  110. New Phytol. 2017 Apr;214(2):808-819 - PubMed
  111. Int J Mol Sci. 2012;13(8):9900-22 - PubMed
  112. Nat Genet. 2006 Aug;38(8):948-52 - PubMed
  113. Funct Integr Genomics. 2010 Nov;10(4):493-507 - PubMed
  114. Plant Physiol. 2015 May;168(1):222-32 - PubMed
  115. Nature. 2006 Aug 31;442(7106):1046-9 - PubMed
  116. Plant Physiol Biochem. 2016 Feb;99:108-17 - PubMed
  117. J Exp Bot. 2020 Aug 17;71(17):5205-5222 - PubMed
  118. Planta. 2019 May;249(5):1267-1284 - PubMed
  119. Biochim Biophys Acta. 2011 Aug;1809(8):459-68 - PubMed

MeSH terms

Publication Types