Display options
Share it on

Sci Rep. 2020 Mar 23;10(1):5211. doi: 10.1038/s41598-020-62104-w.

Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes.

Scientific reports

L Avilés-Félix, A Olivier, G Li, C S Davies, L Álvaro-Gómez, M Rubio-Roy, S Auffret, A Kirilyuk, A V Kimel, Th Rasing, L D Buda-Prejbeanu, R C Sousa, B Dieny, I L Prejbeanu

Affiliations

  1. Spintec, Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000, Grenoble, France. [email protected].
  2. Spintec, Université Grenoble Alpes, CNRS, CEA, Grenoble INP, IRIG-SPINTEC, 38000, Grenoble, France.
  3. Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands.
  4. FELIX Laboratory, Radboud University, 7 Toernooiveld, 6525, ED Nijmegen, The Netherlands.

PMID: 32251329 PMCID: PMC7089968 DOI: 10.1038/s41598-020-62104-w

Abstract

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. In particular, the ultrafast speed of the magnetic reversal can enable the writing speeds associated with magnetic memory devices to be potentially pushed towards THz frequencies. This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm

References

  1. Daval, J. & Bechevet, B. Rare earth transition metal alloys for magneto-optical recording. J. Magn. Magn. Mater. 129, 98–107, https://doi.org/10.1016/0304-8853(94)90434-0 (1994). - PubMed
  2. Radu,  F. &  Sánchez-Barriga,  J.  Chapter 9 - ferrimagnetic heterostructures for applications in magnetic recording. In Domracheva, N., Caporali, M. & Rentschler, E. (eds.) Novel Magnetic Nanostructures, Advanced Nanomaterials, 267–331, https://doi.org/10.1016/B978-0-12-813594-5.00009-6 (Elsevier, 2018). - PubMed
  3. Bean, C. & Livingston, uD. Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959). - PubMed
  4. Je, S. et al. Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling. Appl. Phys. Lett. 112, 062401, https://doi.org/10.1063/1.5017738 (2018). - PubMed
  5. Chen, J.-Y., He, L., Wang, J.-P. & Li, M. All-optical switching of magnetic tunnel junctions with single subpicosecond laser pulses. Phys. Rev. Appl. 7, 021001, https://doi.org/10.1103/PhysRevApplied.7.021001 (2017). - PubMed
  6. Iihama,  S.  et al.  Single-shot multi-level all-optical magnetization switching mediated by spin-polarized hot electron transport. ArXiv e-prints (2018). 1805.02432. - PubMed
  7. Yu, J. et al. Long spin coherence length and bulk-like spin-orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34, https://doi.org/10.1038/s41563-018-0236-9 (2019). - PubMed
  8. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601, https://doi.org/10.1103/PhysRevLett.99.047601 (2007). - PubMed
  9. El Hadri, M. S. et al. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses. Phys. Rev. B 94, 064412, https://doi.org/10.1103/PhysRevB.94.064412 (2016). - PubMed
  10. Lalieu, M. L. M., Peeters, M. J. G., Haenen, S. R. R., Lavrijsen, R. & Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 96, 220411, https://doi.org/10.1103/PhysRevB.96.220411 (2017). - PubMed
  11. Gorchon, J. et al. Role of electron and phonon temperatures in the helicity-independent all-optical switching of GdFeCo. Phys. Rev. B 94, 184406, https://doi.org/10.1103/PhysRevB.94.184406 (2016). - PubMed
  12. Moreno, R., Ostler, T. A., Chantrell, R. W. & Chubykalo-Fesenko, O. Conditions for thermally induced all-optical switching in ferrimagnetic alloys: Modeling of TbCo. Phys. Rev. B 96, 014409, https://doi.org/10.1103/PhysRevB.96.014409 (2017). - PubMed
  13. Davies,  C.  et al.  Blueprint for deterministic all-optical switching of magnetization. preprint ArXiv:1904.11977 (2019). - PubMed
  14. Banerjee,  C.  et al.  Single pulse all-optical toggle switching of magnetization without Gd: The example of Mn - PubMed
  15. Kirilyuk, A., Kimel, A. V. & Rasing, T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Reports on Prog. Phys. 76, 026501, https://doi.org/10.1088/0034-4885/76/2/026501 (2013). - PubMed
  16. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286, https://doi.org/10.1038/nmat3864 (2014). - PubMed
  17. Khorsand, A. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205, https://doi.org/10.1103/PhysRevLett.108.127205 (2012). - PubMed
  18. Yamada,  K. T.  et al.  Efficient all-optical helicity-dependent switching in Pt/Co/Pt with dual laser pulses. ArXiv preprint:1903.01941 (2019). - PubMed
  19. Medapalli, R. et al. Multiscale dynamics of helicity-dependent all-optical magnetization reversal in ferromagnetic Co/Pt multilayers. Phys. Rev. B 96, 224421, https://doi.org/10.1103/PhysRevB.96.224421 (2017). - PubMed
  20. Vahaplar, K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 103, 117201, https://doi.org/10.1103/PhysRevLett.103.117201 (2009). - PubMed
  21. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205, https://doi.org/10.1038/nature09901 (2011). - PubMed
  22. Mentink, J. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202, https://doi.org/10.1103/PhysRevLett.108.057202 (2012). - PubMed
  23. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666, https://doi.org/10.1038/ncomms1666 (2012). - PubMed
  24. Alebrand, S. et al. Light-induced magnetization reversal of high-anisotropy TbCo alloy films. Appl. Phys. Lett. 101, 162408, https://doi.org/10.1063/1.4759109 (2012). - PubMed
  25. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340, https://doi.org/10.1126/science.1253493 (2014). - PubMed
  26. Liao,  J.-W.  et al.  Controlling All-Optical Helicity-Dependent Switching in Engineered Rare-Earth Free Synthetic Ferrimagnets. Adv. Sci. 1901876, https://doi.org/10.1002/advs.201901876 (2019). - PubMed
  27. Kimel, A. V. Three rules of design. Nat. Mater. 13, 225, https://doi.org/10.1038/nmat3886 (2014). - PubMed
  28. Liu, T.-M. et al. Nanoscale confinement of all-optical magnetic switching in TbFeCo-competition with nanoscale heterogeneity. Nano Lett. 15, 6862–6868, https://doi.org/10.1021/acs.nanolett.5b02743 (2015). - PubMed
  29. Vas’kovskiy, V. O., Svalov, A. V., Balymov, K. G. & Kulesh, N. A. Effect of annealing on the magnetic anisotropy and hysteretic properties of film structures containing Tb-Co amorphous layers. The Phys. Met. Metallogr. 113, 862–866, https://doi.org/10.1134/S0031918X1209013X (2012). - PubMed
  30. Vorobiov, S. et al. The effect of annealing on magnetic properties of Co/Gd multilayers. Vacuum 120, 9–12, https://doi.org/10.1016/j.vacuum.2015.06.009 (2015). - PubMed
  31. Lee, C.-M., Ye, L.-X., Hsieh, T.-H., Huang, C.-Y. & Wu, T.-H. Magnetic properties of tbfeco-based perpendicular magnetic tunnel junctions. J. Appl. Phys. 107, 09C712, https://doi.org/10.1063/1.3358593 (2010). - PubMed
  32. Liu, J. Simple technique for measurements of pulsed gaussian-beam spot sizes. Opt. letters 7, 196–198, https://doi.org/10.1364/OL.7.000196 (1982). - PubMed

Publication Types