Display options
Share it on

Front Bioeng Biotechnol. 2020 Apr 07;8:294. doi: 10.3389/fbioe.2020.00294. eCollection 2020.

Imaging the Cell Morphological Response to 3D Topography and Curvature in Engineered Intestinal Tissues.

Frontiers in bioengineering and biotechnology

Gizem Altay, Sébastien Tosi, María García-Díaz, Elena Martínez

Affiliations

  1. Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
  2. Advanced Digital Microscopy Core Facility, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.
  3. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain.
  4. Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.

PMID: 32318564 PMCID: PMC7154059 DOI: 10.3389/fbioe.2020.00294

Abstract

While conventional cell culture methodologies have relied on flat, two-dimensional cell monolayers, three-dimensional engineered tissues are becoming increasingly popular. Often, engineered tissues can mimic the complex architecture of native tissues, leading to advancements in reproducing physiological functional properties. In particular, engineered intestinal tissues often use hydrogels to mimic villi structures. These finger-like protrusions of a few hundred microns in height have a well-defined topography and curvature. Here, we examined the cell morphological response to these villus-like microstructures at single-cell resolution using a novel embedding method that allows for the histological processing of these delicate hydrogel structures. We demonstrated that by using photopolymerisable poly(ethylene) glycol as an embedding medium, the villus-like microstructures were successfully preserved after sectioning with vibratome or cryotome. Moreover, high-resolution imaging of these sections revealed that cell morphology, nuclei orientation, and the expression of epithelial polarization markers were spatially encoded along the vertical axis of the villus-like microstructures and that this cell morphological response was dramatically affected by the substrate curvature. These findings, which are in good agreement with the data reported for

Copyright © 2020 Altay, Tosi, García-Díaz and Martínez.

Keywords: cell morphology; cell orientation; confocal microscopy; histological section; hydrogel scaffold; small intestine; substrate curvature; villus

References

  1. Trends Biotechnol. 2019 Aug;37(8):838-854 - PubMed
  2. Lab Chip. 2011 Feb 7;11(3):389-92 - PubMed
  3. Proc Natl Acad Sci U S A. 2015 May 12;112(19):5944-9 - PubMed
  4. Biomaterials. 2019 Nov;221:119404 - PubMed
  5. SLAS Discov. 2019 Jul;24(6):615-627 - PubMed
  6. Nat Rev Mol Cell Biol. 2016 Sep;17(9):564-80 - PubMed
  7. Biomaterials. 2007 Dec;28(34):5087-92 - PubMed
  8. Microsc Res Tech. 2010 Dec;73(12):1123-33 - PubMed
  9. Integr Biol (Camb). 2015 Dec;7(12):1611-21 - PubMed
  10. J Biomed Mater Res. 1999;48(4):504-10 - PubMed
  11. Mol Pharm. 2014 Jul 7;11(7):2030-9 - PubMed
  12. Methods Mol Biol. 2010;591:211-27 - PubMed
  13. Tissue Eng Part B Rev. 2016 Aug;22(4):265-83 - PubMed
  14. Cell Mol Gastroenterol Hepatol. 2017 Jan 14;3(2):150-162 - PubMed
  15. Macromol Biosci. 2017 Jun;17(6): - PubMed
  16. Biomaterials. 2017 Jun;128:44-55 - PubMed
  17. Mayo Clin Proc. 2018 Apr;93(4):509-517 - PubMed
  18. Nat Rev Mol Cell Biol. 2006 Mar;7(3):211-24 - PubMed
  19. Annu Rev Chem Biomol Eng. 2012;3:421-44 - PubMed
  20. Nature. 2016 Feb 18;530(7590):340-3 - PubMed
  21. Biotechnol Bioeng. 2014 Jun;111(6):1222-32 - PubMed
  22. Science. 2019 Aug 16;365(6454):705-710 - PubMed
  23. Nat Methods. 2016 Apr 28;13(5):405-14 - PubMed
  24. Biophys J. 2016 Jan 5;110(1):269-77 - PubMed
  25. Adv Mater. 2009 Sep 4;21(32-33):3307-29 - PubMed
  26. Front Bioeng Biotechnol. 2018 Dec 18;6:197 - PubMed
  27. CSH Protoc. 2008 Aug 01;2008:pdb.prot4991 - PubMed
  28. Acta Biomater. 2018 Sep 1;77:311-321 - PubMed
  29. Ann Anat. 2009 Jan;191(1):126-35 - PubMed
  30. Open Biol. 2019 Oct 31;9(10):190155 - PubMed
  31. Tissue Eng Part C Methods. 2013 Oct;19(10):794-801 - PubMed
  32. Cell Mol Life Sci. 2015 Jan;72(2):237-49 - PubMed
  33. Nat Rev Mol Cell Biol. 2007 Oct;8(10):839-45 - PubMed
  34. J Cell Sci. 2010 Dec 15;123(Pt 24):4201-13 - PubMed
  35. Biofabrication. 2019 Feb 25;11(2):025007 - PubMed

Publication Types