Display options
Share it on

iScience. 2020 May 22;23(5):101090. doi: 10.1016/j.isci.2020.101090. Epub 2020 Apr 22.

Cooperativity in Proteasome Core Particle Maturation.

iScience

Anjana Suppahia, Pushpa Itagi, Alicia Burris, Faith Mi Ge Kim, Alexander Vontz, Anupama Kante, Seonghoon Kim, Wonpil Im, Eric J Deeds, Jeroen Roelofs

Affiliations

  1. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA.
  2. Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA.
  3. Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA.
  4. Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
  5. Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA.
  6. Department of Biological Sciences, Lehigh University, Bethlehem, PA 18105, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA 18105, USA; Department of Chemistry, Lehigh University, Bethlehem, PA 18105, USA.
  7. Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA; Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 99024, USA; Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 99024, USA. Electronic address: [email protected].
  8. Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, KS 66506, USA. Electronic address: [email protected].

PMID: 32380419 PMCID: PMC7210456 DOI: 10.1016/j.isci.2020.101090

Abstract

Proteasomes are multi-subunit protease complexes found in all domains of life. The maturation of the core particle (CP), which harbors the active sites, involves dimerization of two half CPs (HPs) and an autocatalytic cleavage that removes β propeptides. How these steps are regulated remains poorly understood. Here, we used the Rhodococcus erythropolis CP to dissect this process in vitro. Our data show that propeptides regulate the dimerization of HPs through flexible loops we identified. Furthermore, N-terminal truncations of the propeptides accelerated HP dimerization and decelerated CP auto-activation. We identified cooperativity in autocatalysis and found that the propeptide can be partially cleaved by adjacent active sites, potentially aiding an otherwise strictly autocatalytic mechanism. We propose that cross-processing during bacterial CP maturation is the underlying mechanism leading to the observed cooperativity of activation. Our work suggests that the bacterial β propeptide plays an unexpected and complex role in regulating dimerization and autocatalytic activation.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: Biochemistry; Biological Sciences; Microbiology

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

References

  1. Nat Commun. 2015 Mar 16;6:6384 - PubMed
  2. Structure. 2014 May 6;22(5):731-43 - PubMed
  3. Cell. 1998 Feb 6;92(3):367-80 - PubMed
  4. Nat Commun. 2016 Mar 11;7:10900 - PubMed
  5. Mol Microbiol. 2006 Mar;59(5):1417-28 - PubMed
  6. Nature. 2009 Oct 1;461(7264):621-6 - PubMed
  7. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):10976-83 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E1001-10 - PubMed
  9. Biochim Biophys Acta. 2014 Jan;1843(1):2-12 - PubMed
  10. FEBS Lett. 1997 Nov 24;418(1-2):189-94 - PubMed
  11. Curr Top Dev Biol. 2006;75:125-69 - PubMed
  12. EMBO J. 1996 Dec 16;15(24):6887-98 - PubMed
  13. Cell. 1996 Sep 20;86(6):961-72 - PubMed
  14. Nat Commun. 2015 Jan 22;6:6123 - PubMed
  15. Science. 2003 Dec 12;302(5652):1963-6 - PubMed
  16. J Mol Biol. 2017 Nov 10;429(22):3500-3524 - PubMed
  17. Cell. 1998 Feb 20;92(4):489-99 - PubMed
  18. Biochemistry. 2013 May 28;52(21):3618-28 - PubMed
  19. J Mol Biol. 1998 Jun 26;279(5):1187-91 - PubMed
  20. EMBO J. 2007 May 2;26(9):2339-49 - PubMed
  21. ACS Infect Dis. 2017 Feb 10;3(2):176-181 - PubMed
  22. Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2140-5 - PubMed
  23. Mol Microbiol. 2010 Sep;77(5):1123-35 - PubMed
  24. Structure. 2006 Jul;14(7):1179-88 - PubMed
  25. Sci Rep. 2015 Aug 19;5:13130 - PubMed
  26. J Biol Chem. 2016 Jan 22;291(4):1991-2003 - PubMed
  27. Nature. 2009 Jun 11;459(7248):861-5 - PubMed
  28. Nat Rev Mol Cell Biol. 2009 Feb;10(2):104-15 - PubMed
  29. EMBO J. 2010 Jun 16;29(12):2037-47 - PubMed
  30. Nat Struct Biol. 1994 Nov;1(11):765-70 - PubMed
  31. Microbiol Mol Biol Rev. 2016 Dec 14;81(1): - PubMed
  32. Nat Struct Mol Biol. 2011 May;18(5):622-9 - PubMed
  33. Lancet Glob Health. 2015 Jan;3(1):e10-2 - PubMed
  34. J Mol Biol. 2004 Jan 2;335(1):233-45 - PubMed
  35. Nature. 2013 May 23;497(7450):512-6 - PubMed
  36. Biochemistry. 1978 Oct 3;17(20):4277-85 - PubMed
  37. Nat Med. 2007 Dec;13(12):1515-20 - PubMed
  38. FEBS Lett. 1997 Jan 2;400(1):83-90 - PubMed
  39. EMBO J. 2008 Aug 20;27(16):2204-13 - PubMed
  40. Acta Crystallogr F Struct Biol Commun. 2014 Apr;70(Pt 4):418-23 - PubMed
  41. Biophysics (Nagoya-shi). 2005 Oct 19;1:55-65 - PubMed
  42. J Biol Chem. 2007 Jun 22;282(25):18448-57 - PubMed
  43. Nature. 1996 Aug 1;382(6590):468-71 - PubMed
  44. Mol Cell. 2019 Oct 3;76(1):138-147.e5 - PubMed
  45. Nat Struct Mol Biol. 2007 Dec;14(12):1180-8 - PubMed

Publication Types

Grant support