Display options
Share it on

Proc Natl Acad Sci U S A. 2020 May 19;117(20):10727-10732. doi: 10.1073/pnas.1921138117. Epub 2020 Apr 30.

Controlling photoionization using attosecond time-slit interferences.

Proceedings of the National Academy of Sciences of the United States of America

Yu-Chen Cheng, Sara Mikaelsson, Saikat Nandi, Lisa Rämisch, Chen Guo, Stefanos Carlström, Anne Harth, Jan Vogelsang, Miguel Miranda, Cord L Arnold, Anne L'Huillier, Mathieu Gisselbrecht

Affiliations

  1. Department of Physics, Lund University, 22100 Lund, Sweden.
  2. Department of Physics, Lund University, 22100 Lund, Sweden [email protected] [email protected].

PMID: 32354996 PMCID: PMC7245115 DOI: 10.1073/pnas.1921138117

Abstract

When small quantum systems, atoms or molecules, absorb a high-energy photon, electrons are emitted with a well-defined energy and a highly symmetric angular distribution, ruled by energy quantization and parity conservation. These rules are based on approximations and symmetries which may break down when atoms are exposed to ultrashort and intense optical pulses. This raises the question of their universality for the simplest case of the photoelectric effect. Here we investigate photoionization of helium by a sequence of attosecond pulses in the presence of a weak infrared laser field. We continuously control the energy of the photoelectrons and introduce an asymmetry in their emission direction, at variance with the idealized rules mentioned above. This control, made possible by the extreme temporal confinement of the light-matter interaction, opens a road in attosecond science, namely, the manipulation of ultrafast processes with a tailored sequence of attosecond pulses.

Copyright © 2020 the Author(s). Published by PNAS.

Keywords: attosecond pulses; electron momentum spectroscopy; photoelectric effect; photoionization

Conflict of interest statement

The authors declare no competing interest.

References

  1. Phys Rev Lett. 1993 Sep 27;71(13):1994-1997 - PubMed
  2. Science. 2001 May 4;292(5518):902-5 - PubMed
  3. Phys Rev Lett. 2005 Jul 22;95(4):040401 - PubMed
  4. Science. 2010 Jun 25;328(5986):1658-62 - PubMed
  5. Phys Rev Lett. 2015 Oct 23;115(17):173004 - PubMed
  6. Phys Rev Lett. 2015 Apr 10;114(14):143001 - PubMed
  7. Phys Rev Lett. 2003 Dec 19;91(25):253004 - PubMed
  8. Science. 2001 Jun 1;292(5522):1689-92 - PubMed
  9. Science. 2018 Jun 22;360(6395):1326-1330 - PubMed
  10. Science. 2016 Aug 26;353(6302):916-9 - PubMed
  11. Phys Rev Lett. 2011 Apr 8;106(14):143002 - PubMed
  12. Phys Rev A. 1996 Jul;54(1):721-728 - PubMed
  13. Phys Rev Lett. 2016 Aug 26;117(9):093001 - PubMed
  14. Phys Rev Lett. 1987 Jan 26;58(4):349-352 - PubMed
  15. Science. 2002 Aug 16;297(5584):1144-8 - PubMed
  16. Nature. 2007 Oct 25;449(7165):1029-32 - PubMed
  17. Nature. 2001 Nov 8;414(6860):182-4 - PubMed
  18. Phys Rev A. 1994 Mar;49(3):2117-2132 - PubMed
  19. Phys Rev Lett. 1993 Mar 15;70(11):1599-1602 - PubMed
  20. Science. 2017 Nov 17;358(6365):893-896 - PubMed
  21. Phys Rev Lett. 2012 Aug 24;109(8):083001 - PubMed
  22. Phys Rev Lett. 1992 Oct 19;69(16):2353-2356 - PubMed

Publication Types