Display options
Share it on

iScience. 2020 May 22;23(5):101048. doi: 10.1016/j.isci.2020.101048. Epub 2020 Apr 11.

A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling.

iScience

Kahori Shiba-Fukushima, Tsuyoshi Inoshita, Osamu Sano, Hidehisa Iwata, Kei-Ichi Ishikawa, Hideyuki Okano, Wado Akamatsu, Yuzuru Imai, Nobutaka Hattori

Affiliations

  1. Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
  2. BioMolecular Research Laboratories, Takeda Pharmaceutical Company, Fujisawa, Kanagawa 251-8555, Japan.
  3. Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
  4. Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
  5. Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
  6. Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Electronic address: [email protected].
  7. Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Electronic address: [email protected].

PMID: 32335362 PMCID: PMC7183160 DOI: 10.1016/j.isci.2020.101048

Abstract

Early-onset Parkinson's disease-associated PINK1-Parkin signaling maintains mitochondrial health. Therapeutic approaches for enhancing PINK1-Parkin signaling present a potential strategy for treating various diseases caused by mitochondrial dysfunction. We report two chemical enhancers of PINK1-Parkin signaling, identified using a robust cell-based high-throughput screening system. These small molecules, T0466 and T0467, activate Parkin mitochondrial translocation in dopaminergic neurons and myoblasts at low doses that do not induce mitochondrial accumulation of PINK1. Moreover, both compounds reduce unfolded mitochondrial protein levels, presumably through enhanced PINK1-Parkin signaling. These molecules also mitigate the locomotion defect, reduced ATP production, and disturbed mitochondrial Ca

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Keywords: Biological Sciences; Cell Biology; Neuroscience

Conflict of interest statement

Declaration of Interests The authors declare that they have no conflict of interest.

References

  1. J Cell Biol. 2010 Apr 19;189(2):211-21 - PubMed
  2. Cell. 2018 Mar 22;173(1):130-139.e10 - PubMed
  3. Annu Rev Biochem. 2011;80:769-95 - PubMed
  4. J Vis Exp. 2019 Sep 18;(151): - PubMed
  5. Autophagy. 2013 Nov 1;9(11):1750-7 - PubMed
  6. Sci Rep. 2012;2:1002 - PubMed
  7. Science. 2013 Apr 26;340(6131):471-5 - PubMed
  8. PLoS Genet. 2014 Dec 04;10(12):e1004861 - PubMed
  9. Proc Natl Acad Sci U S A. 2008 May 13;105(19):7070-5 - PubMed
  10. Neurotox Res. 2018 May;33(4):725-737 - PubMed
  11. Mol Cell. 2016 May 5;62(3):371-384 - PubMed
  12. Cell Rep. 2017 Oct 31;21(5):1304-1316 - PubMed
  13. Lancet Neurol. 2007 Jul;6(7):652-62 - PubMed
  14. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14503-8 - PubMed
  15. Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10793-8 - PubMed
  16. J Cell Biol. 2014 Apr 28;205(2):143-53 - PubMed
  17. J Cell Biol. 2010 Nov 29;191(5):933-42 - PubMed
  18. Neuron. 2015 Jul 15;87(2):371-81 - PubMed
  19. Cell. 2011 Nov 11;147(4):893-906 - PubMed
  20. Nature. 2014 Jun 5;510(7503):162-6 - PubMed
  21. PLoS Genet. 2012;8(3):e1002537 - PubMed
  22. Chembiochem. 2018 Mar 2;19(5):425-429 - PubMed
  23. Cell. 2013 Aug 15;154(4):737-47 - PubMed
  24. J Cell Sci. 2015 Mar 1;128(5):964-78 - PubMed
  25. Mol Cell. 2015 Oct 1;60(1):7-20 - PubMed
  26. J Med Chem. 2017 Apr 27;60(8):3518-3524 - PubMed
  27. Nature. 2006 Jun 29;441(7097):1162-6 - PubMed
  28. Nature. 2009 Sep 17;461(7262):402-6 - PubMed
  29. Bioconjug Chem. 2016 May 18;27(5):1175-1187 - PubMed
  30. J Neurosci. 2009 Mar 18;29(11):3538-50 - PubMed
  31. Nature. 2006 Jun 29;441(7097):1157-61 - PubMed
  32. Hum Mol Genet. 2015 Aug 1;24(15):4429-42 - PubMed
  33. Neurochem Int. 2017 Oct;109:106-116 - PubMed
  34. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4039-44 - PubMed
  35. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3116-21 - PubMed
  36. Open Biol. 2012 May;2(5):120080 - PubMed
  37. PLoS Biol. 2010 Jan 26;8(1):e1000298 - PubMed
  38. Mol Cell. 2014 Nov 6;56(3):360-75 - PubMed
  39. Nature. 1998 Apr 9;392(6676):605-8 - PubMed
  40. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9572-7 - PubMed
  41. EMBO Mol Med. 2018 Oct;10(10): - PubMed
  42. Science. 2004 May 21;304(5674):1158-60 - PubMed
  43. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15072-7 - PubMed
  44. Front Neurosci. 2014 Nov 14;8:365 - PubMed
  45. Hum Mol Genet. 2017 Aug 15;26(16):3172-3185 - PubMed
  46. J Cell Biol. 2010 Dec 27;191(7):1367-80 - PubMed
  47. EMBO J. 2006 Jul 12;25(13):2966-77 - PubMed
  48. PLoS One. 2016 Nov 10;11(11):e0165983 - PubMed
  49. eNeuro. 2018 Feb 19;5(1): - PubMed
  50. Cardiovasc Res. 2018 Jan 1;114(1):90-102 - PubMed
  51. Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5018-23 - PubMed
  52. J Physiol. 2019 Apr;597(7):1975-1991 - PubMed
  53. Cell Death Differ. 2012 Aug;19(8):1308-16 - PubMed
  54. Int J Neurosci. 2017 Sep;127(9):781-784 - PubMed

Publication Types