Display options
Share it on

Cureus. 2020 Mar 26;12(3):e7425. doi: 10.7759/cureus.7425.

Review Analysis on Thymectomy vs Conservative Medical Management in Myasthenia Gravis.

Cureus

Muhammad Humayoun Rashid, Hafiz Khawaja Muhammad Yasir, Muhammad Usman Piracha, Umer Salman, Hamza Yousaf

Affiliations

  1. Neurology, Bakhtawar Amin Medical and Dental College, Multan, PAK.
  2. Internal Medicine, Nishtar Medical University and Hospital, Multan, PAK.
  3. Biochemistry, Bakhtawar Amin Medical and Dental College, Multan, PAK.
  4. Internal Medicine, City Hospital, Multan, PAK.

PMID: 32337145 PMCID: PMC7182154 DOI: 10.7759/cureus.7425

Abstract

Myasthenia gravis (MG) is an acquired, rare autoimmune disease that occurs due to autoantibodies blocking neuromuscular transmission. Its pathophysiology involves production of antibodies against the nicotinic acetylcholine receptors. Patients with negative anti-acetylcholine receptors (AChR) antibodies results are recognized as seronegative myasthenia gravis. In this review we tried to compare surgical and medical management of MG with each other to find out which is more effective. Different clinical trials and retrospective cohorts comparing these two parameters statistically were searched and studied. Remission rates in both medical and surgical management were compared. We found out that rates of remission were better in post thymectomy patients than patients on various medical treatment options including corticosteroids, immunosuppressants, intravenous immunoglobulins and acetylcholinesterase inhibitors alone. Hence thymectomy is studied to be the superior treatment option than other conservative medical management options alone.

Copyright © 2020, Rashid et al.

Keywords: acetylcholinesterase inhibitors; ivig; myasthenia gravis; plasmapheresis; review; thymectomy; treatment options

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):492-6 - PubMed
  2. Neurotherapeutics. 2008 Oct;5(4):535-41 - PubMed
  3. Mayo Clin Proc. 1977 May;52(5):267-80 - PubMed
  4. Med Sci Monit. 2004 Dec;10(12):CR684-9 - PubMed
  5. Eur J Cardiothorac Surg. 2010 Jan;37(1):7-12 - PubMed
  6. Orphanet J Rare Dis. 2014 Dec 24;9:214 - PubMed
  7. Science. 1973 May 25;180(4088):871-2 - PubMed
  8. J Clin Oncol. 2004 Apr 15;22(8):1501-9 - PubMed
  9. Surgery. 2009 Apr;145(4):392-8 - PubMed
  10. Eur J Cardiothorac Surg. 2009 Jun;35(6):1063-9; discussion 1069 - PubMed
  11. Arch Neurol. 1991 Jul;48(7):733-9 - PubMed
  12. Neurology. 1976 Nov;26(11):1054-9 - PubMed
  13. Neurology. 2000 Jul 12;55(1):16-23 - PubMed
  14. Nat Med. 2001 Mar;7(3):365-8 - PubMed
  15. Neuromuscul Disord. 2002 Dec;12(10):964-9 - PubMed
  16. J Neurol. 1990 Oct;237(6):339-44 - PubMed
  17. Autoimmune Dis. 2011;2011:847393 - PubMed
  18. Ann Surg. 1987 Jul;206(1):79-88 - PubMed
  19. Eur J Cardiothorac Surg. 2003 Nov;24(5):677-83 - PubMed
  20. Neuromuscul Disord. 1996 May;6(3):155-61 - PubMed
  21. Muscle Nerve. 2008 Feb;37(2):141-9 - PubMed
  22. Ann Neurol. 2005 Mar;57(3):444-8 - PubMed
  23. J Autoimmun. 2014 Feb-Mar;48-49:143-8 - PubMed
  24. J Neurol. 1997 Feb;244(2):112-8 - PubMed
  25. Muscle Nerve. 2011 Jul;44(1):36-40 - PubMed
  26. Neurology. 2009 May 5;72(18):1548-54 - PubMed
  27. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(3):237-57 - PubMed
  28. J Neurol. 2019 Apr;266(4):960-968 - PubMed
  29. J Clin Invest. 2006 Nov;116(11):2843-54 - PubMed
  30. J Neurol Neurosurg Psychiatry. 2007 Oct;78(10):1109-12 - PubMed
  31. N Engl J Med. 2016 Aug 11;375(6):511-22 - PubMed
  32. Clin Neurophysiol. 2000 Jul;111(7):1203-7 - PubMed
  33. Lancet Neurol. 2019 Mar;18(3):259-268 - PubMed

Publication Types