Display options
Share it on

Gels. 2020 May 08;6(2). doi: 10.3390/gels6020014.

Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery.

Gels (Basel, Switzerland)

Esfandyar Askari, Amir Seyfoori, Meitham Amereh, Sadaf Samimi Gharaie, Hanieh Sadat Ghazali, Zahra Sadat Ghazali, Bardia Khunjush, Mohsen Akbari

Affiliations

  1. Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran P.O. Box 1517964311, Iran.
  2. Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.
  3. Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran.
  4. Biomedical Engineering Department, Amirkabir University of Technology (AUT), Tehran P.O. Box 158754413, Iran.
  5. Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada.
  6. Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada.

PMID: 32397180 PMCID: PMC7345431 DOI: 10.3390/gels6020014

Abstract

Currently, surgical operations, followed by systemic drug delivery, are the prevailing treatment modality for most diseases, including cancers and trauma-based injuries. Although effective to some extent, the side effects of surgery include inflammation, pain, a lower rate of tissue regeneration, disease recurrence, and the non-specific toxicity of chemotherapies, which remain significant clinical challenges. The localized delivery of therapeutics has recently emerged as an alternative to systemic therapy, which not only allows the delivery of higher doses of therapeutic agents to the surgical site, but also enables overcoming post-surgical complications, such as infections, inflammations, and pain. Due to the limitations of the current drug delivery systems, and an increasing clinical need for disease-specific drug release systems, hydrogels have attracted considerable interest, due to their unique properties, including a high capacity for drug loading, as well as a sustained release profile. Hydrogels can be used as local drug performance carriers as a means for diminishing the side effects of current systemic drug delivery methods and are suitable for the majority of surgery-based injuries. This work summarizes recent advances in hydrogel-based drug delivery systems (DDSs), including formulations such as implantable, injectable, and sprayable hydrogels, with a particular emphasis on stimuli-responsive materials. Moreover, clinical applications and future opportunities for this type of post-surgery treatment are also highlighted.

Keywords: drug delivery systems; hydrogel; implantable; injectable; sprayable

References

  1. Biomaterials. 2017 Sep;139:229-243 - PubMed
  2. J Biomed Mater Res A. 2007 May;81(2):326-33 - PubMed
  3. Front Bioeng Biotechnol. 2019 Jul 09;7:164 - PubMed
  4. Mater Sci Eng C Mater Biol Appl. 2014 Dec;45:1-7 - PubMed
  5. Biomaterials. 2019 Nov;222:119439 - PubMed
  6. N Engl J Med. 1993 Jun 3;328(22):1587-91 - PubMed
  7. Small. 2019 Sep;15(36):e1902232 - PubMed
  8. Chem Soc Rev. 2010 Jun;39(6):1877-90 - PubMed
  9. J Am Chem Soc. 2012 Oct 10;134(40):16558-61 - PubMed
  10. Nat Nanotechnol. 2019 Jan;14(1):89-97 - PubMed
  11. Cancer Res. 2002 Jan 1;62(1):307-12 - PubMed
  12. J Ultrasound Med. 2008 Apr;27(4):611-32; quiz 633-6 - PubMed
  13. Angew Chem Int Ed Engl. 2015 Jun 15;54(25):7376-80 - PubMed
  14. Ann Surg Oncol. 2011 May;18(5):1319-26 - PubMed
  15. Chem Commun (Camb). 2014 Dec 21;50(98):15541-4 - PubMed
  16. Biomaterials. 2018 Sep;177:98-112 - PubMed
  17. J Control Release. 2020 Mar 10;319:344-351 - PubMed
  18. Acta Biomater. 2019 Sep 15;96:123-136 - PubMed
  19. Adv Mater. 2016 Feb 10;28(6):1031-43 - PubMed
  20. Adv Healthc Mater. 2019 Jul;8(14):e1900203 - PubMed
  21. J Biomater Sci Polym Ed. 1991;3(2):155-62 - PubMed
  22. J Dent Res. 2006 May;85(5):473-8 - PubMed
  23. Biomaterials. 2016 Apr;85:152-67 - PubMed
  24. Acta Biomater. 2015 Jan;11:137-50 - PubMed
  25. Ann Surg. 2014 Aug;260(2):372-7 - PubMed
  26. Acta Biomater. 2019 Mar 1;86:235-246 - PubMed
  27. Chem Commun (Camb). 2010 Jun 21;46(23):4094-6 - PubMed
  28. Nat Rev Mater. 2016 Dec;1(12): - PubMed
  29. Adv Mater. 2018 May;30(18):e1707071 - PubMed
  30. J Control Release. 2020 May 10;321:145-158 - PubMed
  31. Nanoscale. 2014 Jul 7;6(13):7443-52 - PubMed
  32. Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7620-7624 - PubMed
  33. Angew Chem Int Ed Engl. 2009;48(7):1275-8 - PubMed
  34. J Control Release. 2009 Sep 15;138(3):268-76 - PubMed
  35. Adv Mater. 2016 Sep;28(33):7178-84 - PubMed
  36. Carbohydr Polym. 2019 Nov 1;223:115070 - PubMed
  37. Biomaterials. 2018 Sep;178:401-412 - PubMed
  38. Drug Discov Today. 2002 May 15;7(10):569-79 - PubMed
  39. Breast Cancer Res. 2012 Oct 22;14(5):R133 - PubMed
  40. Langmuir. 2014 Jul 1;30(25):7576-84 - PubMed
  41. Biomaterials. 2001 Nov;22(22):3025-33 - PubMed
  42. Nat Mater. 2013 Nov;12(11):991-1003 - PubMed
  43. Biomaterials. 2009 Apr;30(12):2180-98 - PubMed
  44. J Mater Chem B. 2018 Sep 28;6(36):5651-5670 - PubMed
  45. Sci Rep. 2018 Dec 3;8(1):17555 - PubMed
  46. Chem Soc Rev. 2012 Mar 21;41(6):2193-221 - PubMed
  47. Chem Eng Sci. 2015 Mar 24;125:75-84 - PubMed
  48. J Control Release. 2014 Sep 28;190:36-40 - PubMed
  49. Carbohydr Polym. 2015 Mar 6;117:524-36 - PubMed
  50. Adv Sci (Weinh). 2018 Mar 03;5(5):1700848 - PubMed
  51. Int J Nanomedicine. 2018 Nov 19;13:7623-7631 - PubMed
  52. Acta Biomater. 2016 Jul 1;38:59-68 - PubMed
  53. Adv Drug Deliv Rev. 2008 Jun 30;60(10):1209-17 - PubMed
  54. J Biomed Mater Res. 2002 Jan;59(1):35-45 - PubMed
  55. Bioeng Transl Med. 2016 Jul 05;1(3):239-251 - PubMed
  56. Adv Sci (Weinh). 2015 Jan 21;2(1-2):1400010 - PubMed
  57. Curr Opin Biotechnol. 2016 Aug;40:35-40 - PubMed
  58. Biomaterials. 2020 Feb;232:119726 - PubMed
  59. Int J Pharm. 2016 Apr 30;503(1-2):229-37 - PubMed
  60. J Adv Res. 2019 May 03;20:33-41 - PubMed
  61. Lancet. 2019 Feb 2;393(10170):401 - PubMed
  62. Int J Pharm. 2002 Mar 20;235(1-2):43-50 - PubMed
  63. Int J Pharm. 2015 May 15;485(1-2):31-40 - PubMed
  64. Adv Healthc Mater. 2016 Nov;5(21):2751-2757 - PubMed
  65. J Mater Chem B. 2019 Apr 7;7(13):2151-2161 - PubMed
  66. PLoS One. 2018 Jan 2;13(1):e0190364 - PubMed
  67. Expert Opin Drug Deliv. 2019 Jan;16(1):79-99 - PubMed
  68. Acta Biomater. 2017 Feb;49:89-100 - PubMed
  69. Mater Sci Eng C Mater Biol Appl. 2016 Jun;63:274-84 - PubMed
  70. Sci Transl Med. 2016 Nov 16;8(365):365ra156 - PubMed
  71. Biotechniques. 2019 Jan;66(1):40-53 - PubMed
  72. Acta Biomater. 2017 Aug;58:168-180 - PubMed
  73. Chem Soc Rev. 2013 Oct 21;42(20):8106-21 - PubMed
  74. Biomaterials. 2018 Jun;167:143-152 - PubMed
  75. Eur J Pharmacol. 2019 Jul 5;854:201-212 - PubMed
  76. J Control Release. 2012 Apr 10;159(1):14-26 - PubMed
  77. J Am Chem Soc. 2009 Aug 19;131(32):11308-9 - PubMed
  78. ACS Appl Mater Interfaces. 2019 Jan 23;11(3):2880-2890 - PubMed
  79. Phys Med Biol. 2009 Mar 21;54(6):R27-57 - PubMed
  80. J Mater Chem B. 2015 Oct 28;3(40):8010-8019 - PubMed
  81. Biomaterials. 2017 Mar;121:41-54 - PubMed
  82. Biomacromolecules. 2012 May 14;13(5):1573-83 - PubMed
  83. J Orthop Trauma. 2012 Dec;26(12):684-8 - PubMed
  84. Sci Rep. 2020 Jan 21;10(1):770 - PubMed
  85. Ultrasound Med Biol. 2010 Aug;36(8):1364-75 - PubMed
  86. Sci Transl Med. 2015 Aug 12;7(300):300ra128 - PubMed
  87. ACS Appl Mater Interfaces. 2019 Jul 17;11(28):24945-24958 - PubMed
  88. J Control Release. 2015 Oct 10;215:1-11 - PubMed
  89. ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36721-36732 - PubMed
  90. Angew Chem Int Ed Engl. 2003 Oct 13;42(39):4742-58 - PubMed
  91. Drug Deliv Transl Res. 2016 Jun;6(3):333-40 - PubMed
  92. Biomaterials. 2010 Sep;31(27):7150-66 - PubMed
  93. J Control Release. 2019 Mar 10;297:60-70 - PubMed
  94. Biomaterials. 2018 Jan;153:27-48 - PubMed
  95. J Control Release. 2007 Jul 31;120(3):186-94 - PubMed
  96. Biomater Sci. 2019 Aug 1;7(8):3359-3372 - PubMed
  97. Chem Rev. 2011 Aug 10;111(8):4453-74 - PubMed
  98. Polymers (Basel). 2018 Nov 28;10(12): - PubMed
  99. Biomater Sci. 2019 Feb 26;7(3):843-855 - PubMed
  100. J Adv Res. 2015 Mar;6(2):105-21 - PubMed
  101. Int J Biol Macromol. 2020 Apr 1;148:163-172 - PubMed
  102. Dig Liver Dis. 2009 Jan;41(1):36-41 - PubMed
  103. ACS Appl Mater Interfaces. 2017 Oct 18;9(41):35673-35682 - PubMed
  104. Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:499-510 - PubMed
  105. Asian J Pharm Sci. 2018 Mar;13(2):101-112 - PubMed
  106. Int J Biol Macromol. 2018 Oct 15;118(Pt B):1422-1430 - PubMed
  107. ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9080-9089 - PubMed
  108. Biomaterials. 2020 Feb;230:119599 - PubMed
  109. Nat Commun. 2019 Jul 19;10(1):3211 - PubMed
  110. Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:186-193 - PubMed
  111. Adv Healthc Mater. 2015 Oct;4(14):2071-2077 - PubMed
  112. J Control Release. 2010 Oct 15;147(2):269-77 - PubMed
  113. J Am Chem Soc. 2012 Jul 25;134(29):12302-7 - PubMed
  114. Carbohydr Polym. 2013 Sep 12;97(2):565-70 - PubMed
  115. J Mater Chem B. 2017 Feb 28;5(8):1551-1565 - PubMed
  116. ACS Nano. 2019 Mar 26;13(3):3353-3362 - PubMed
  117. Bioconjug Chem. 2008 May;19(5):1040-8 - PubMed
  118. J Control Release. 1999 Nov 1;62(1-2):115-27 - PubMed
  119. Adv Mater. 2016 May;28(19):3669-76 - PubMed

Publication Types