Display options
Share it on

Biomed Opt Express. 2020 Mar 27;11(4):2254-2267. doi: 10.1364/BOE.389561. eCollection 2020 Apr 01.

Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering.

Biomedical optics express

Junliang Dong, Holger Breitenborn, Riccardo Piccoli, Lucas V Besteiro, Pei You, Diego Caraffini, Zhiming M Wang, Alexander O Govorov, Rafik Naccache, Fiorenzo Vetrone, Luca Razzari, Roberto Morandotti

Affiliations

  1. Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications (EMT), Varennes, QC J3X 1S2, Canada.
  2. [email protected].
  3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
  4. Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA.
  5. Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada.
  6. Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
  7. [email protected].

PMID: 32341881 PMCID: PMC7173899 DOI: 10.1364/BOE.389561

Abstract

In view of minimally-invasive clinical interventions, laser tissue soldering assisted by plasmonic nanoparticles is emerging as an appealing concept in surgical medicine, holding the promise of surgeries without sutures. Rigorous monitoring of the plasmonically-heated solder and the underlying tissue is crucial for optimizing the soldering bonding strength and minimizing the photothermal damage. To this end, we propose a non-invasive, non-contact, and non-ionizing modality for monitoring nanoparticle-assisted laser-tissue interaction and visualizing the localized photothermal damage, by taking advantage of the unique sensitivity of terahertz radiation to the hydration level of biological tissue. We demonstrate that terahertz radiation can be employed as a versatile tool to reveal the thermally-affected evolution in tissue, and to quantitatively characterize the photothermal damage induced by nanoparticle-assisted laser tissue soldering in three dimensions. Our approach can be easily extended and applied across a broad range of clinical applications involving laser-tissue interaction, such as laser ablation and photothermal therapies.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

Conflict of interest statement

The authors declare no conflicts of interest.

References

  1. Lasers Surg Med. 2000;27(1):66-72 - PubMed
  2. Opt Lett. 2017 May 1;42(9):1828-1831 - PubMed
  3. ACS Nano. 2013 Apr 23;7(4):2988-98 - PubMed
  4. Lasers Surg Med. 1995;17(4):315-49 - PubMed
  5. J Biomed Opt. 2012 Jan;17(1):010701 - PubMed
  6. J Biophotonics. 2014 May;7(5):295-303 - PubMed
  7. Lasers Surg Med. 1986;6(2):137-41 - PubMed
  8. Science. 1983 Apr 29;220(4596):524-7 - PubMed
  9. J Biomed Opt. 2012 Apr;17(4):040503 - PubMed
  10. Biomed Opt Express. 2018 Feb 16;9(3):1198-1215 - PubMed
  11. Biomed Opt Express. 2011 Aug 1;2(8):2339-47 - PubMed
  12. IEEE Trans Terahertz Sci Technol. 2018 Jan;8(1):27-37 - PubMed
  13. Nature. 2014 Jan 16;505(7483):382-5 - PubMed
  14. Adv Sci (Weinh). 2016 Sep 01;3(12):1600206 - PubMed
  15. Lasers Surg Med. 2007 Aug;39(7):597-604 - PubMed
  16. Phys Med Biol. 2004 May 7;49(9):1595-607 - PubMed
  17. Nat Biomed Eng. 2017;1: - PubMed
  18. IEEE Trans Terahertz Sci Technol. 2011 Sep;1(1):201-219 - PubMed
  19. Opt Express. 2016 Nov 14;24(23):26972-26985 - PubMed
  20. Phys Med Biol. 2009 Jul 7;54(13):4225-41 - PubMed
  21. Appl Opt. 1999 Nov 1;38(31):6661-72 - PubMed
  22. Phys Med Biol. 2002 Nov 7;47(21):3853-63 - PubMed
  23. J Lasers Med Sci. 2013 Summer;4(3):99-106 - PubMed
  24. Biomed Opt Express. 2016 Aug 30;7(9):3756-3783 - PubMed
  25. Sci Rep. 2017 Feb 06;7:42124 - PubMed
  26. Skin Res Technol. 2007 Feb;13(1):19-24 - PubMed
  27. Lasers Surg Med. 2018 Feb;50(2):143-152 - PubMed
  28. Science. 1986 Jun 13;232(4756):1421-2 - PubMed

Publication Types