Display options
Share it on

Plants (Basel). 2020 May 20;9(5). doi: 10.3390/plants9050648.

Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane.

Plants (Basel, Switzerland)

Aurélien L Furlan, Yoann Laurin, Camille Botcazon, Nely Rodríguez-Moraga, Sonia Rippa, Magali Deleu, Laurence Lins, Catherine Sarazin, Sébastien Buchoux

Affiliations

  1. Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium.
  2. Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France.
  3. Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France.

PMID: 32443858 PMCID: PMC7285231 DOI: 10.3390/plants9050648

Abstract

Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.

Keywords: amphiphiles; biomimetic membranes; biophysics; elicitor; lipid; molecular interactions; plant plasma membrane

References

  1. Plant Physiol. 2020 Apr;182(4):1682-1696 - PubMed
  2. Colloids Surf B Biointerfaces. 2010 Jun 15;78(1):17-23 - PubMed
  3. Chem Phys Lipids. 2012 Oct;165(7):745-52 - PubMed
  4. J Comput Chem. 2005 Dec;26(16):1701-18 - PubMed
  5. Membranes (Basel). 2017 Jul 26;7(3): - PubMed
  6. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72 - PubMed
  7. Elife. 2017 Mar 06;6: - PubMed
  8. J Comput Chem. 2005 Dec;26(16):1668-88 - PubMed
  9. Colloids Surf B Biointerfaces. 2017 Aug 1;156:114-122 - PubMed
  10. Biophys J. 2017 Apr 25;112(8):1663-1672 - PubMed
  11. Structure. 2018 Feb 6;26(2):356-367.e3 - PubMed
  12. Int J Pharm. 2006 Nov 15;325(1-2):99-107 - PubMed
  13. J Phys Chem B. 2016 Dec 22;120(50):12826-12842 - PubMed
  14. Mol Plant Pathol. 2019 Nov;20(11):1602-1616 - PubMed
  15. PLoS One. 2014 Jan 28;9(1):e87903 - PubMed
  16. Mol Plant Microbe Interact. 2017 Jan;30(1):5-15 - PubMed
  17. Langmuir. 2018 Feb 6;34(5):1999-2005 - PubMed
  18. Biophys J. 2016 Dec 6;111(11):2450-2459 - PubMed
  19. J Biol Chem. 2009 Mar 6;284(10):6079-92 - PubMed
  20. Biochim Biophys Acta. 2007 Sep;1768(9):2182-94 - PubMed
  21. Plant Physiol Biochem. 2015 Feb;87:53-60 - PubMed
  22. J Biol Chem. 2015 Feb 27;290(9):5810-25 - PubMed
  23. New Phytol. 2016 Dec;212(4):888-895 - PubMed
  24. Dev Cell. 2018 May 21;45(4):465-480.e11 - PubMed
  25. Biophys J. 2014 May 20;106(10):2115-25 - PubMed
  26. Biophys J. 2001 Feb;80(2):994-1003 - PubMed
  27. Biophys J. 2005 Jul;89(1):L04-6 - PubMed
  28. Biochim Biophys Acta. 2016 Nov;1858(11):2647-2661 - PubMed
  29. Biophys J. 1979 Sep;27(3):339-58 - PubMed
  30. Biochim Biophys Acta. 2011 Aug;1808(8):2000-8 - PubMed
  31. J Am Chem Soc. 2014 Oct 15;136(41):14554-9 - PubMed
  32. PLoS One. 2012;7(10):e47745 - PubMed
  33. Plant Physiol. 1995 Sep;109(1):15-30 - PubMed
  34. Biochemistry. 2001 Aug 7;40(31):9428-37 - PubMed
  35. Cold Spring Harb Perspect Biol. 2011 Nov 01;3(11):a009803 - PubMed
  36. Biochim Biophys Acta. 2010 Jul;1798(7):1324-32 - PubMed
  37. Biochim Biophys Acta. 2015 Nov;1848(11 Pt A):2789-98 - PubMed
  38. Biochim Biophys Acta. 2011 Jan;1808(1):298-306 - PubMed
  39. Biochim Biophys Acta. 2016 Dec;1858(12):2965-2971 - PubMed
  40. Chem Sci. 2017 Nov 27;9(4):956-972 - PubMed
  41. Biophys J. 2008 Apr 1;94(7):2667-79 - PubMed
  42. J Exp Bot. 2016 Sep;67(17):5173-85 - PubMed
  43. Plant Cell Physiol. 2007 Nov;48(11):1601-11 - PubMed
  44. J Phys Chem B. 2009 Jul 2;113(26):8872-7 - PubMed
  45. Annu Rev Phytopathol. 2015;53:541-63 - PubMed
  46. J Colloid Interface Sci. 2010 Jan 15;341(2):240-7 - PubMed
  47. Biochim Biophys Acta. 2013 Feb;1828(2):801-15 - PubMed
  48. J Comput Chem. 2005 Dec;26(16):1781-802 - PubMed
  49. Eur Biophys J. 2000;29(3):184-95 - PubMed
  50. Plant Cell Physiol. 2009 Feb;50(2):341-59 - PubMed
  51. J Neurochem. 1999 Aug;73(2):758-69 - PubMed
  52. Sci Rep. 2017 Apr 25;7(1):1143 - PubMed
  53. Biopolymers. 2015 Sep;104(5):521-32 - PubMed
  54. Anal Biochem. 2001 Jun 15;293(2):258-63 - PubMed
  55. Chem Biodivers. 2007 Jun;4(6):1299-312 - PubMed
  56. Biochim Biophys Acta. 2006 Oct;1758(10):1541-56 - PubMed
  57. J Phys Chem B. 2009 May 14;113(19):7012-9 - PubMed
  58. Colloids Surf B Biointerfaces. 2020 Jan 1;185:110576 - PubMed
  59. Int J Mol Sci. 2019 Feb 26;20(5): - PubMed
  60. J Comput Chem. 2009 Jul 30;30(10):1545-614 - PubMed
  61. J Mater Chem B. 2017 Aug 14;5(30):5911-5923 - PubMed
  62. Arch Biochem Biophys. 2002 Sep 15;405(2):214-22 - PubMed
  63. Science. 2017 Dec 15;358(6369):1431-1434 - PubMed
  64. Nat Protoc. 2018 Sep;13(9):2086-2101 - PubMed
  65. Elife. 2017 Jul 31;6: - PubMed
  66. FASEB J. 2010 Apr;24(4):1128-38 - PubMed
  67. Plant Physiol. 2014 Jan;164(1):273-86 - PubMed
  68. Biochim Biophys Acta. 2014 Dec;1838(12):3171-3190 - PubMed
  69. Biophys J. 2008 Oct;95(8):3840-9 - PubMed
  70. Q Rev Biophys. 1980 May;13(2):121-200 - PubMed
  71. Cell Microbiol. 2011 Nov;13(11):1824-37 - PubMed
  72. J Phys D Appl Phys. 2017 Apr 5;50(13):134004 - PubMed
  73. Biochimie. 2016 Nov;130:23-32 - PubMed
  74. J Magn Reson. 2003 Mar;161(1):64-9 - PubMed
  75. Mol Plant. 2016 Sep 6;9(9):1229-1239 - PubMed
  76. Plant Physiol. 2016 Jan;170(1):367-84 - PubMed
  77. Eur Biophys J. 2007 Apr;36(4-5):305-14 - PubMed
  78. Chembiochem. 2010 Sep 24;11(14):2042-9 - PubMed
  79. Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):307-323 - PubMed
  80. Mol Plant Microbe Interact. 2013 Oct;26(10):1115-22 - PubMed
  81. Biochim Biophys Acta. 1983 Mar 21;737(1):117-71 - PubMed
  82. Science. 1972 Feb 18;175(4023):720-31 - PubMed
  83. Biophys J. 1992 Jan;61(1):42-57 - PubMed
  84. Proteins. 2007 Sep 1;68(4):936-47 - PubMed
  85. Plant Cell. 2009 May;21(5):1541-55 - PubMed
  86. Biochim Biophys Acta. 2013 Sep;1828(9):2064-73 - PubMed
  87. Nat Rev Immunol. 2016 Sep;16(9):537-52 - PubMed
  88. Biophys J. 2009 Jan;96(1):86-100 - PubMed
  89. Spectrochim Acta A Mol Biomol Spectrosc. 2013 Jun;110:450-7 - PubMed
  90. Colloids Surf B Biointerfaces. 2019 Mar 1;175:384-391 - PubMed
  91. J Comput Chem. 2004 Oct;25(13):1656-76 - PubMed
  92. Langmuir. 2012 Feb 21;28(7):3524-33 - PubMed
  93. Protein Sci. 2015 Sep;24(9):1333-46 - PubMed
  94. J Microbiol. 2011 Feb;49(1):146-50 - PubMed
  95. Chem Rev. 2019 May 8;119(9):6184-6226 - PubMed
  96. Trends Plant Sci. 2020 Jan;25(1):22-34 - PubMed
  97. Int J Mol Sci. 2010;11(12):5095-108 - PubMed
  98. EMBO J. 2005 Sep 21;24(18):3159-65 - PubMed
  99. Biophys J. 2015 Nov 17;109(10):2079-89 - PubMed
  100. J Biol Chem. 2003 Jul 25;278(30):28109-15 - PubMed
  101. Chem Phys Lipids. 2009 Sep;161(1):51-5 - PubMed
  102. Biophys J. 2014 May 6;106(9):1958-69 - PubMed
  103. Prog Lipid Res. 2019 Jan;73:1-27 - PubMed
  104. Mol Plant Pathol. 2011 Feb;12(2):151-66 - PubMed
  105. Mol Pharm. 2009 Sep-Oct;6(5):1264-76 - PubMed
  106. Langmuir. 2017 Sep 26;33(38):9979-9987 - PubMed
  107. Langmuir. 2007 Feb 27;23(5):2700-5 - PubMed
  108. Nat Immunol. 2005 Oct;6(10):973-9 - PubMed
  109. Biochim Biophys Acta. 1987 Sep 18;903(1):11-7 - PubMed
  110. Biophys J. 2019 Sep 17;117(6):1037-1050 - PubMed
  111. Methods Appl Fluoresc. 2015 Oct 01;3(4):042003 - PubMed
  112. Biophys J. 2018 Oct 16;115(8):1509-1517 - PubMed
  113. FASEB J. 1995 Apr;9(7):535-40 - PubMed
  114. Chem Phys Lipids. 1993 Sep;64(1-3):99-116 - PubMed
  115. Biochim Biophys Acta. 2014 Mar;1838(3):776-83 - PubMed
  116. Nat Methods. 2017 Jan;14(1):71-73 - PubMed
  117. Trends Plant Sci. 2018 Oct;23(10):899-917 - PubMed
  118. Front Physiol. 2017 Feb 13;8:63 - PubMed
  119. Biophys J. 1997 Apr;72(4):1878-86 - PubMed
  120. Biophys J. 2011 Dec 21;101(12):2855-70 - PubMed
  121. Annu Rev Phytopathol. 2017 Aug 4;55:257-286 - PubMed
  122. Curr Opin Plant Biol. 2009 Aug;12(4):414-20 - PubMed
  123. J Magn Reson. 2004 Jun;168(2):187-93 - PubMed
  124. J Phys Chem B. 2007 Jul 12;111(27):7812-24 - PubMed
  125. Biochemistry. 1998 Jun 2;37(22):8180-90 - PubMed
  126. J Am Chem Soc. 2009 Dec 30;131(51):18335-42 - PubMed
  127. Methods Enzymol. 2001;339:285-313 - PubMed
  128. Biophys J. 2006 Jan 15;90(2):470-9 - PubMed

Publication Types

Grant support