Display options
Share it on

Front Cell Neurosci. 2020 May 12;14:117. doi: 10.3389/fncel.2020.00117. eCollection 2020.

Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis.

Frontiers in cellular neuroscience

Ximena Paez-Colasante, Claudia Figueroa-Romero, Amy E Rumora, Junguk Hur, Faye E Mendelson, John M Hayes, Carey Backus, Ghislaine F Taubman, Laurie Heinicke, Nils G Walter, Sami J Barmada, Stacey A Sakowski, Eva L Feldman

Affiliations

  1. Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
  2. Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
  3. Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States.

PMID: 32477070 PMCID: PMC7235295 DOI: 10.3389/fncel.2020.00117

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.

Copyright © 2020 Paez-Colasante, Figueroa-Romero, Rumora, Hur, Mendelson, Hayes, Backus, Taubman, Heinicke, Walter, Barmada, Sakowski and Feldman.

Keywords: amyotrophic lateral sclerosis; cytoplasmic aggregates; microRNAs; profiling; trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43)

References

  1. Nucleic Acids Res. 2015 Jul 1;43(W1):W460-6 - PubMed
  2. FEBS J. 2019 Sep;286(17):3276-3298 - PubMed
  3. Methods Mol Biol. 2016;1458:291-310 - PubMed
  4. Neurodegener Dis. 2011;8(4):262-74 - PubMed
  5. J Cell Physiol. 2017 Nov;232(11):2938-2945 - PubMed
  6. Ann Thorac Surg. 2019 Jan;107(1):76-83 - PubMed
  7. J Mol Biol. 2005 May 6;348(3):575-88 - PubMed
  8. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7821-6 - PubMed
  9. Sci Rep. 2017 Aug 30;7(1):10046 - PubMed
  10. J Neurosci. 2010 Jan 13;30(2):639-49 - PubMed
  11. Acta Neuropathol. 2008 Jan;115(1):115-22 - PubMed
  12. Mol Neurobiol. 2018 Mar;55(3):2617-2630 - PubMed
  13. Science. 2001 Oct 26;294(5543):862-4 - PubMed
  14. Acta Neuropathol. 2015 Nov;130(5):643-60 - PubMed
  15. Int J Mol Sci. 2018 Apr 28;19(5): - PubMed
  16. Nat Rev Dis Primers. 2017 Oct 05;3:17071 - PubMed
  17. EMBO J. 2015 Nov 3;34(21):2633-51 - PubMed
  18. Science. 2009 Feb 27;323(5918):1208-1211 - PubMed
  19. Nat Neurosci. 2018 Mar;21(3):329-340 - PubMed
  20. Neuropathol Appl Neurobiol. 2016 Apr;42(3):242-54 - PubMed
  21. FEBS Open Bio. 2013 Nov 20;4:1-10 - PubMed
  22. Front Mol Neurosci. 2018 Aug 28;11:288 - PubMed
  23. Mayo Clin Proc. 2018 Nov;93(11):1617-1628 - PubMed
  24. Neurobiol Aging. 2019 Oct;82:48-59 - PubMed
  25. Exp Brain Res. 2017 Aug;235(8):2359-2374 - PubMed
  26. Handb Clin Neurol. 2018;148:603-623 - PubMed
  27. Neurobiol Dis. 2019 Apr;124:133-140 - PubMed
  28. Int J Biol Sci. 2015 Jul 21;11(10):1140-9 - PubMed
  29. N Engl J Med. 2017 Jul 13;377(2):162-172 - PubMed
  30. Biochim Biophys Acta. 2016 Jan;1859(1):71-81 - PubMed
  31. J Cell Mol Med. 2019 Mar;23(3):1647-1656 - PubMed
  32. J Mol Neurosci. 2018 Dec;66(4):617-628 - PubMed
  33. Acta Neuropathol Commun. 2016 Sep 29;4(1):105 - PubMed
  34. J Neurosci. 2016 Jul 20;36(29):7707-17 - PubMed
  35. Nat Commun. 2015 Jan 29;6:6183 - PubMed
  36. Sci Rep. 2018 Mar 15;8(1):4606 - PubMed
  37. Sci Rep. 2018 Apr 4;8(1):5609 - PubMed
  38. Acta Neuropathol Commun. 2013 Jul 30;1:42 - PubMed
  39. PLoS Genet. 2011 Feb 03;7(2):e1001286 - PubMed
  40. EMBO J. 2017 Jun 14;36(12):1770-1787 - PubMed
  41. Neurobiol Dis. 2011 Feb;41(2):398-406 - PubMed
  42. Nat Rev Neurol. 2015 May;11(5):266-79 - PubMed
  43. Oncogene. 2006 Oct 9;25(46):6163-9 - PubMed
  44. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3858-63 - PubMed
  45. J Clin Invest. 2020 Mar 2;130(3):1139-1155 - PubMed
  46. Science. 2001 Oct 26;294(5543):853-8 - PubMed
  47. Front Neurosci. 2012 May 08;6:59 - PubMed
  48. Science. 2008 Mar 21;319(5870):1668-72 - PubMed
  49. Biochemistry. 2013 Jul 2;52(26):4439-50 - PubMed
  50. PLoS One. 2015 Sep 16;10(9):e0138425 - PubMed
  51. EMBO J. 2011 Jan 19;30(2):277-88 - PubMed
  52. Biochem Biophys Res Commun. 2010 Sep 24;400(3):340-5 - PubMed
  53. Neurosci Lett. 2019 Aug 24;708:134176 - PubMed
  54. Neurotoxicology. 2018 Sep;68:91-100 - PubMed
  55. Neurobiol Dis. 2015 Jan;73:96-105 - PubMed
  56. Nat Chem Biol. 2014 Aug;10(8):677-85 - PubMed
  57. Front Mol Neurosci. 2019 Feb 14;12:25 - PubMed
  58. Science. 2009 Feb 27;323(5918):1205-8 - PubMed
  59. Mol Cell Neurosci. 2016 Mar;71:34-45 - PubMed
  60. Front Neurol. 2019 Mar 07;10:186 - PubMed
  61. Brain. 2013 May;136(Pt 5):1371-82 - PubMed
  62. Lancet Neurol. 2018 Jan;17(1):94-102 - PubMed
  63. Nat Rev Neurol. 2010 Apr;6(4):211-20 - PubMed
  64. Biomolecules. 2015 Sep 30;5(4):2363-87 - PubMed
  65. J Cell Sci. 2008 Nov 15;121(Pt 22):3778-85 - PubMed
  66. Ann Clin Transl Neurol. 2014 Oct;1(10):778-87 - PubMed
  67. Sci Rep. 2017 Oct 31;7(1):14680 - PubMed
  68. Science. 2001 Oct 26;294(5543):858-62 - PubMed
  69. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3347-52 - PubMed
  70. Brain Res. 2018 Aug 15;1693(Pt A):67-74 - PubMed
  71. Semin Cell Dev Biol. 2020 Mar;99:193-201 - PubMed
  72. Nature. 2008 Sep 4;455(7209):58-63 - PubMed
  73. Rev Neurosci. 2010;21(4):251-72 - PubMed
  74. Front Genet. 2018 Aug 14;9:310 - PubMed
  75. FASEB J. 2009 Nov;23(11):3917-27 - PubMed
  76. Mol Brain. 2013 May 24;6:26 - PubMed
  77. J Biol Chem. 2017 Jun 23;292(25):10600-10612 - PubMed
  78. Mol Brain. 2015 Oct 24;8(1):67 - PubMed
  79. J Biol Chem. 2014 May 16;289(20):14263-71 - PubMed
  80. PLoS One. 2010 Oct 11;5(10):e13250 - PubMed
  81. Adv Exp Med Biol. 2017;978:337-361 - PubMed
  82. Mol Genet Genomic Med. 2019 Mar;7(3):e548 - PubMed
  83. Neurobiol Dis. 2018 Jun;114:85-94 - PubMed
  84. Nat Rev Neurol. 2018 Sep;14(9):544-558 - PubMed
  85. Cell Cycle. 2019 Nov;18(22):3095-3110 - PubMed
  86. J Neuroinflammation. 2017 Oct 23;14(1):205 - PubMed
  87. Mol Neurobiol. 2013 Dec;48(3):952-63 - PubMed
  88. Cell Death Differ. 2010 Feb;17(2):215-20 - PubMed
  89. J Bioenerg Biomembr. 2005 Jun;37(3):179-90 - PubMed
  90. J Biol Chem. 2019 Mar 8;294(10):3696-3706 - PubMed
  91. Curr Mol Med. 2011 Feb;11(1):48-56 - PubMed
  92. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24 - PubMed
  93. Adv Exp Med Biol. 2017;978:255-275 - PubMed
  94. Hum Mol Genet. 2000 Mar 22;9(5):803-11 - PubMed
  95. Cell Death Differ. 2018 Jan;25(1):21-26 - PubMed
  96. Int Rev Cell Mol Biol. 2017;334:309-343 - PubMed
  97. Biochemistry. 2009 Jul 14;48(27):6348-60 - PubMed
  98. Dev Neurobiol. 2009 Nov;69(13):871-84 - PubMed
  99. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13318-23 - PubMed
  100. Nucleic Acids Res. 2013 May;41(9):5062-74 - PubMed
  101. Brain Res Bull. 2017 Jun;132:139-149 - PubMed
  102. Mol Med Rep. 2018 Mar;17(3):3891-3897 - PubMed
  103. J Biol Chem. 2010 Feb 26;285(9):6826-34 - PubMed
  104. Mol Neurobiol. 2013 Aug;48(1):22-35 - PubMed
  105. Mol Neurobiol. 2015;51(3):1249-62 - PubMed
  106. FEBS J. 2010 May;277(10):2268-81 - PubMed
  107. Int J Mol Sci. 2018 May 22;19(5): - PubMed
  108. Biomed Pharmacother. 2018 Aug;104:280-290 - PubMed
  109. J Biol Chem. 2008 May 9;283(19):13302-9 - PubMed
  110. Hum Genet. 2017 Sep;136(9):1193-1214 - PubMed
  111. Trends Neurosci. 2014 Aug;37(8):433-42 - PubMed
  112. Science. 2006 Oct 6;314(5796):130-3 - PubMed
  113. J Biol Chem. 2011 Jan 14;286(2):1204-15 - PubMed
  114. J Neurochem. 2018 Feb 27;: - PubMed
  115. Acta Neuropathol. 2009 Feb;117(2):137-49 - PubMed

Publication Types

Grant support