Display options
Share it on

Neurotox Res. 2021 Apr;39(2):392-412. doi: 10.1007/s12640-020-00229-6. Epub 2020 Jun 13.

Designer Cathinones N-Ethylhexedrone and Buphedrone Show Different In Vitro Neurotoxicity and Mice Behaviour Impairment.

Neurotoxicity research

Cristina de Mello-Sampayo, Ana Rita Vaz, Sara C Henriques, Adelaide Fernandes, Fabiana Paradinha, Pedro Florindo, Paulo Faria, Rui Moreira, Dora Brites, Alvaro Lopes

Affiliations

  1. Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
  2. Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
  3. Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal. [email protected].
  4. Egas Moniz-Cooperativa de Ensino Superior, Campus Universitário, Caparica, Portugal. [email protected].

PMID: 32535718 DOI: 10.1007/s12640-020-00229-6

Abstract

N-Ethylhexedrone (NEH) and buphedrone (Buph) are emerging synthetic cathinones (SC) with limited information about their detrimental effects within central nervous system. Objectives: To distinguish mice behavioural changes by NEH and Buph and validate their differential harmful impact on human neurons and microglia. In vivo safety data showed the typical induced behaviour of excitation and stereotypies with 4-64 mg/kg, described for other SC. Buph additionally produced jumping and aggressiveness signs, while NEH caused retropulsion and circling. Transient reduction in body-weight gain was obtained with NEH at 16 mg/kg and induced anxiolytic-like behaviour mainly with Buph. Both drugs generated place preference shift in mice at 4 and 16 mg/kg, suggestive of abuse potential. In addition, mice withdrawn NEH displayed behaviour suggestive of depression, not seen with Buph. When tested at 50-400 μM in human nerve cell lines, NEH and Buph caused neuronal viability loss at 100 μM, but only NEH produced similar results in microglia, indicating different cell susceptibilities. NEH mainly induced microglial late apoptosis/necrosis, while Buph caused early apoptosis. NEH was unique in triggering microglia shorter/thicker branches indicative of cell activation, and more effective in increasing microglial lysosomal biogenesis (100 μM vs. 400 μM Buph), though both produced the same effect on neurons at 400 μM. These findings indicate that NEH and Buph exert neuro-microglia toxicities by distinct mechanisms and highlight NEH as a specific inducer of microglia activation. Buph and NEH showed in vivo/in vitro neurotoxicities but enhanced specific NEH-induced behavioural and neuro-microglia dysfunctionalities pose safety concerns over that of Buph.

Keywords: Addiction potential; Human cell culture models; Mice behavioural tests; Microglia activation; Neurotoxicity; Synthetic cathinones

References

  1. Al-Mamary H, El-Shaibany A, Al-Habori M, Al-Meeri A, Al-Zubairi AS et al (2014) Effect of Catha edulis on the activities of enzyme markers of carcinogenicity in chemically-induced hepatocellular carcinoma in rabbits. Int J Cancer Res 10:1–13. https://doi.org/10.3923/ijcr.2014.1.13 - PubMed
  2. Angoa-Perez M, Anneken JH, Kuhn DM (2017) Neurotoxicology of synthetic cathinone analogs. Curr Top Behav Neurosci 32:209–230. https://doi.org/10.1007/7854_2016_21 - PubMed
  3. Annau Z, Cuomo V (1988) Mechanisms of neurotoxicity and their relationship to behavioral changes. Toxicology 49:219–225. https://doi.org/10.1016/0300-483x(88)90002-9 - PubMed
  4. Baumann MH, Solis E Jr, Watterson LR, Marusich JA, Fantegrossi WE et al (2014) Baths salts, spice, and related designer drugs: the science behind the headlines. J Neurosci 34:15150–15158. https://doi.org/10.1523/JNEUROSCI.3223-14.2014 - PubMed
  5. Berardelli A, Capocaccia L, Pacitti C, Tancredi V, Quinteri F et al (1980) Behavioural and EEG effects induced by an amphetamine like substance (cathinone) in rats. Pharmacol Res Commun 12:959–964 - PubMed
  6. Blum K, Chen AL, Giordano J, Borsten J, Chen TJ et al (2012) The addictive brain: all roads lead to dopamine. J Psychoactive Drugs 44:134–143. https://doi.org/10.1080/02791072.2012.685407 - PubMed
  7. Blum K, Foster Olive M, Wang KK, Febo M, Borsten J et al (2013) Hypothesizing that designer drugs containing cathinones (“bath salts”) have profound neuro-inflammatory effects and dangerous neurotoxic response following human consumption. Med Hypotheses 81:450–455. https://doi.org/10.1016/j.mehy.2013.06.007 - PubMed
  8. Bowyer JF, Robinson B, Ali S, Schmued LC (2008) Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse 62:193–204. https://doi.org/10.1002/syn.20478 - PubMed
  9. Brites D, Vaz AR (2014) Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 8:117. https://doi.org/10.3389/fncel.2014.00117 - PubMed
  10. Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcão AS et al (2014) Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci 8:152. https://doi.org/10.3389/fncel.2014.00152 - PubMed
  11. Chazotte B (2011) Labeling lysosomes in live cells with LysoTracker. Cold Spring Harb Protoc 2011:pdb prot5571. https://doi.org/10.1101/pdb.prot5571 - PubMed
  12. Cunha C, Gomes C, Vaz AR, Brites D (2016, 2016) Exploring new inflammatory biomarkers and pathways during LPS-induced M1 polarization. Mediators Inflamm:6986175. https://doi.org/10.1155/2016/6986175 - PubMed
  13. d’Audiffret AC, Frisbee SJ, Stapleton PA, Goodwill AG, Isingrini E, Frisbee JC (2010) Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease? J Appl Physiol 108:1041–1051. https://doi.org/10.1152/japplphysiol.01440.2009 - PubMed
  14. Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol:4. https://doi.org/10.1101/cshperspect.a008813 - PubMed
  15. Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De Groef L (2017) Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep 7:1576. https://doi.org/10.1038/s41598-017-01747-8 - PubMed
  16. Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1:122–124. https://doi.org/10.1038/nprot.2006.20 - PubMed
  17. den Hollander B, Sundstrom M, Pelander A, Ojanpera I, Mervaala E et al (2014) Keto amphetamine toxicity-focus on the redox reactivity of the cathinone designer drug mephedrone. Toxicol Sci 141:120–131. https://doi.org/10.1093/toxsci/kfu108 - PubMed
  18. den Hollander B, Sundstrom M, Pelander A, Siltanen A, Ojanpera I et al (2015) Mitochondrial respiratory dysfunction due to the conversion of substituted cathinones to methylbenzamides in SH-SY5Y cells. Sci Rep 5:14924. https://doi.org/10.1038/srep14924 - PubMed
  19. EMCDDA (2017a) European drug report 2017: trends and developments. European Monitoring Centre for Drugs and Drug Addiction, Lisbon - PubMed
  20. EMCDDA (2017b) High-risk drug use and new psychoactive substances. Publications Office of the European Union, European Monitoring Centre for Drugs and Drug Addiction https://doi.org/10.2810/583405 - PubMed
  21. EMCDDA (2017c) New drugs emerging at a slower pace - Drugnet Europe 98. European Monitoring Centre for Drugs and Drug Addiction, Lisbon - PubMed
  22. EMCDDA (2018a) European drug report 2018: trends and developments. European Monitoring Centre for Drugs and Drug Addiction, Lisbon. https://doi.org/10.2810/800331 - PubMed
  23. EMCDDA (2018b) Fentanils and synthetic cannabinoids: driving greater complexity into the drug situation - — an update from the EU Early Warning System. European Monitoring Centre for Drugs and Drug Addiction, Lisbon - PubMed
  24. EMCDDA (2019) European drug report 2019: trends and developments. European Monitoring Centre for Drugs and Drug Addiction, Lisbon. https://doi.org/10.2810/191370 - PubMed
  25. Erowid (2018) N-ethylhexedrone reports. https://erowid.org/experiences/subs/exp_NEthylhexedrone.shtml . Accessed 1 Sept 2019 - PubMed
  26. Falcão AS, Carvalho LA, Lidónio G, Vaz AR, Lucas SD et al (2017) Dipeptidyl vinyl sulfone as a novel chemical tool to inhibit HMGB1/NLRP3-inflammasome and inflamma-miRs in Abeta-mediated microglial inflammation. ACS Chem Neurosci 8:89–99. https://doi.org/10.1021/acschemneuro.6b00250 - PubMed
  27. FDA (2017) Assessment of abuse potential of drugs: guidance for industry. https://www.fda.gov/media/116739/download . Accessed 1 Sept 2019 - PubMed
  28. Fernandes A, Ribeiro AR, Monteiro M, Garcia G, Vaz AR et al (2018) Secretome from SH-SY5Y APPSwe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling. Biochimie. https://doi.org/10.1016/j.biochi.2018.05.015 - PubMed
  29. Glennon RA, Young R (2016) Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and alpha-pyrrolidinovalerophenone (alpha-PVP). Brain Res Bull 126:111–126. https://doi.org/10.1016/j.brainresbull.2016.04.011 - PubMed
  30. Haberzettl R, Bert B, Fink H, Fox MA (2013) Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 256:328–345. https://doi.org/10.1016/j.bbr.2013.08.045 - PubMed
  31. Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A (2018) Automated morphological analysis of microglia after stroke. Front Cell Neurosci 12:106. https://doi.org/10.3389/fncel.2018.00106 - PubMed
  32. Herbert K, Karl Z, Gerhard L (1965) Patent DE1545591 - Verfahren zur Herstellung von α-Aminoketonen mit heterocyclischer Aminogruppe - PubMed
  33. Janabi N, Peudenier S, Heron B, Ng KH, Tardieu M (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 195:105–108 - PubMed
  34. Jin MM, Wang F, Qi D, Liu WW, Gu C, Mao CJ, Yang YP, Zhao Z, Hu LF, Liu CF (2018) A critical role of autophagy in regulating microglia polarization in neurodegeneration. Front Aging Neurosci 10:378. https://doi.org/10.3389/fnagi.2018.00378 - PubMed
  35. Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM et al (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17:45–59. https://doi.org/10.1038/nrn.2015.8 - PubMed
  36. Karlsson L, Andersson M, Kronstrand R, Kugelberg FC (2014) Mephedrone, methylone and 3,4-methylenedioxypyrovalerone (MDPV) induce conditioned place preference in mice. Basic Clin Pharmacol Toxicol 115:411–416. https://doi.org/10.1111/bcpt.12253 - PubMed
  37. Kobayashi T, Hayashi E, Shimamura M, Kinoshita M, Murphy NP (2008) Neurochemical responses to antidepressants in the prefrontal cortex of mice and their efficacy in preclinical models of anxiety-like and depression-like behavior: a comparative and correlational study. Psychopharmacology 197:567–580. https://doi.org/10.1007/s00213-008-1070-6 - PubMed
  38. Kodamullil AT, Iyappan A, Karki R, Madan S, Younesi E et al (2017) Of mice and men: comparative analysis of neuro-inflammatory mechanisms in human and mouse using cause-and-effect models. J Alzheimers Dis 59:1045–1055. https://doi.org/10.3233/JAD-170255 - PubMed
  39. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2 - PubMed
  40. Lisek R, Xu W, Yuvasheva E, Chiu YT, Reitz AB et al (2012) Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend 126:257–262. https://doi.org/10.1016/j.drugalcdep.2012.04.021 - PubMed
  41. Liu C, Jia W, Li T, Hua Z, Qian Z (2017) Identification and analytical characterization of nine synthetic cathinone derivatives N-ethylhexedrone, 4-Cl-pentedrone, 4-Cl-alpha-EAPP, propylone, N-ethylnorpentylone, 6-MeO-bk-MDMA, alpha-PiHP, 4-Cl-alpha-PHP, and 4-F-alpha-PHP. Drug Test Anal 9:1162–1171. https://doi.org/10.1002/dta.2136 - PubMed
  42. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I et al (2007) Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell 18:1490–1496. https://doi.org/10.1091/mbc.e06-10-0975 - PubMed
  43. Marona-Lewicka D, Rhee GS, Sprague JE, Nichols DE (1996) Reinforcing effects of certain serotonin-releasing amphetamine derivatives. Pharmacol Biochem Behav 53:99–105 - PubMed
  44. Martinez-Clemente J, Lopez-Arnau R, Abad S, Pubill D, Escubedo E et al (2014) Dose and time-dependent selective neurotoxicity induced by mephedrone in mice. PLoS One 9:e99002. https://doi.org/10.1371/journal.pone.0099002 - PubMed
  45. Marusich JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology 33:1305–1313. https://doi.org/10.1016/j.neuro.2012.08.003 - PubMed
  46. Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS et al (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213. https://doi.org/10.1016/j.neuropharm.2014.02.016 - PubMed
  47. Marusich JA, Lefever TW, Blough BE, Thomas BF, Wiley JL (2016) Pharmacological effects of methamphetamine and alpha-PVP vapor and injection. Neurotoxicology 55:83–91. https://doi.org/10.1016/j.neuro.2016.05.015 - PubMed
  48. Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (2016a) The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue. Neuropharmacology 101:68–75 - PubMed
  49. Matsunaga T, Morikawa Y, Kamata K, Shibata A, Miyazono H et al (2017) alpha-Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology 386:93–102. https://doi.org/10.1016/j.tox.2017.05.017 - PubMed
  50. Moscardo E, Maurin A, Dorigatti R, Champeroux P, Richard S (2007) An optimised methodology for the neurobehavioural assessment in rodents. J Pharmacol Tox Met 56(2):239-255 - PubMed
  51. Nara A, Aki T, Funakoshi T, Unuma K, Uemura K (2012) Hyperstimulation of macropinocytosis leads to lysosomal dysfunction during exposure to methamphetamine in SH-SY5Y cells. Brain Res 1466:1–14. https://doi.org/10.1016/j.brainres.2012.05.017 - PubMed
  52. Oh JH, Hwang JY, Hong SI, Ma SX, Seo JY et al (2018) The new designer drug buphedrone produces rewarding properties via dopamine D1 receptor activation. Addict Biol 23:69–79. https://doi.org/10.1111/adb.12472 - PubMed
  53. Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R, Hedegaard A, Hart ML, Emptage NJ (2017) Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 93:132–146. https://doi.org/10.1016/j.neuron.2016.11.013 - PubMed
  54. Pail PB, Costa KM, Leite CE, Campos MM (2015) Comparative pharmacological evaluation of the cathinone derivatives, mephedrone and methedrone, in mice. Neurotoxicology 50:71–80. https://doi.org/10.1016/j.neuro.2015.08.004 - PubMed
  55. Philogene-Khalid HL, Hicks C, Reitz AB, Liu-Chen LY, Rawls SM (2017) Synthetic cathinones and stereochemistry: S enantiomer of mephedrone reduces anxiety- and depressant-like effects in cocaine- or MDPV-abstinent rats. Drug Alcohol Depend 178:119–125. https://doi.org/10.1016/j.drugalcdep.2017.04.024 - PubMed
  56. Plaza-Zabala A, Sierra-Torre V, Sierra A (2017) Autophagy and microglia: novel partners in neurodegeneration and aging. Int J Mol Sci 18. https://doi.org/10.3390/ijms18030598 - PubMed
  57. Prince JA, Oreland L (1997) Staurosporine differentiated human SH-SY5Y neuroblastoma cultures exhibit transient apoptosis and trophic factor independence. Brain Res Bull 43:515–523. https://doi.org/10.1016/s0361-9230(97)00328-6 - PubMed
  58. Roux S, Sable E, Porsolt RD (2005) Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Curr Protoc Pharmacol Chapter 10:Unit 10 10. https://doi.org/10.1002/0471141755.ph1010s27 - PubMed
  59. Schifano F, Napoletano F, Chiappini S, Guirguis A, Corkery JM et al (2019) New/emerging psychoactive substances and associated psychopathological consequences. Psycholog Med:1–13. https://doi.org/10.1017/S0033291719001727 - PubMed
  60. Siedlecka-Kroplewska K, Szczerba A, Lipinska A, Slebioda T, Kmiec Z (2014) 3-Fluoromethcathinone, a structural analog of mephedrone, inhibits growth and induces cell cycle arrest in HT22 mouse hippocampal cells. J Physiol Pharmacol 65:241–246 - PubMed
  61. Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV (2009) Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould T (ed) Mood and anxiety related phenotypes in mice. Neuromethods, vol 42. Humana Press, Totowa - PubMed
  62. Soares J, Costa VM, Gaspar H, Santos S, de Lourdes BM et al (2019) Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology. https://doi.org/10.1016/j.neuro.2019.08.009 - PubMed
  63. Soria JA, Arroyo DS, Gaviglio EA, Rodriguez-Galan MC, Wang JM et al (2011) Interleukin 4 induces the apoptosis of mouse microglial cells by a caspase-dependent mechanism. Neurobiol Dis 43:616–624. https://doi.org/10.1016/j.nbd.2011.05.010 - PubMed
  64. Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49:499–505. https://doi.org/10.3109/15563650.2011.590812 - PubMed
  65. Sukumaran P, Sun Y, Vyas M, Singh BB (2015) TRPC1-mediated Ca(2)(+) entry is essential for the regulation of hypoxia and nutrient depletion-dependent autophagy. Cell Death Dis 6:e1674. https://doi.org/10.1038/cddis.2015.7 - PubMed
  66. Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M (2013) Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 250:8–19. https://doi.org/10.1016/j.neuroscience.2013.06.049 - PubMed
  67. Tripsit (2018a) Buphedrone. Factsheets 2018 - http://drugs.tripsit.me/buphedrone . Accessed 1 Sept 2019 - PubMed
  68. Tripsit (2018b) Hexen. Factsheets 2018 - http://drugs.tripsit.me/hexen . Accessed 1 Sept 2019 - PubMed
  69. Ugolini F, Lana D, Nardiello P, Nosi D, Pantano D et al (2018) Different patterns of neurodegeneration and glia activation in CA1 and CA3 hippocampal regions of TgCRND8 mice. Front Aging Neurosci 10:372. https://doi.org/10.3389/fnagi.2018.00372 - PubMed
  70. US.FDA (2005) Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Food and Drug Administration Center for Drug Evaluation and Research, U.S. Department of Health and Human Services. https://www.fda.gov/media/72309/download - PubMed
  71. Usenovic M, Krainc D (2012) Lysosomal dysfunction in neurodegeneration: the role of ATP13A2/PARK9. Autophagy 8:987–988. https://doi.org/10.4161/auto.20256 - PubMed
  72. Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45. https://doi.org/10.1007/s00204-013-1163-9 - PubMed
  73. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504 - PubMed
  74. Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S et al (2012) The reinforcing and rewarding effects of methylone, a synthetic cathinone commonly found in “Bath Salts”. J Addict Res Ther (Suppl 9). https://doi.org/10.4172/2155-6105.S9-002 - PubMed
  75. WHO (2019) Critical review report: N-ethylhexedrone. 42nd ECDD (2019): N-ethylhexedrone. https://www.who.int/medicines/access/controlled-substances/Final_N-ethylhexedrone.pdf?ua=1 . Accessed 1 March 2020 - PubMed
  76. Wikstrom M, Thelander G, Nystrom I, Kronstrand R (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34:594–598 - PubMed
  77. Wise RA (2009) Roles for nigrostriatal--not just mesocorticolimbic--dopamine in reward and addiction. Trends Neurosci 32:517–524. https://doi.org/10.1016/j.tins.2009.06.004 - PubMed
  78. Wojcieszak J, Andrzejczak D, Woldan-Tambor A, Zawilska JB (2016) Cytotoxic activity of pyrovalerone derivatives, an emerging group of psychostimulant designer cathinones. Neurotoxicity Res 30:239–250. https://doi.org/10.1007/s12640-016-9640-6 - PubMed
  79. Zancajo VM, Brito J, Carrasco MP, Bronze MR, Moreira R et al (2014) Analytical profiles of “legal highs” containing cathinones available in the area of Lisbon. Portugal Forensic Sci Int 244:102–110. https://doi.org/10.1016/j.forsciint.2014.08.010 - PubMed
  80. Zelger JL, Schorno HX, Carlini EA (1980) Behavioural effects of cathinone, an amine obtained from Catha edulis Forsk.: comparisons with amphetamine, norpseudoephedrine, apomorphine and nomifensine. Bull Narc 32:67–81 - PubMed
  81. Zhitomirsky B, Farber H, Assaraf YG (2018) LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance. J Cell Mol Med 22:2131–2141. https://doi.org/10.1111/jcmm.13485 - PubMed
  82. Zuba D, Adamowicz P, Byrska B (2013) Detection of buphedrone in biological and non-biological material--two case reports. Forensic Sci Int 227:15–20. https://doi.org/10.1016/j.forsciint.2012.08.034 - PubMed

Publication Types

Grant support