Display options
Share it on

Nat Methods. 2020 Jun;17(6):629-635. doi: 10.1038/s41592-020-0837-5. Epub 2020 Jun 01.

Targeted Perturb-seq enables genome-scale genetic screens in single cells.

Nature methods

Daniel Schraivogel, Andreas R Gschwind, Jennifer H Milbank, Daniel R Leonce, Petra Jakob, Lukas Mathur, Jan O Korbel, Christoph A Merten, Lars Velten, Lars M Steinmetz

Affiliations

  1. European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
  2. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
  3. European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany. [email protected].
  4. Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. [email protected].
  5. European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany. [email protected].
  6. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. [email protected].
  7. Stanford Genome Technology Center, Palo Alto, CA, USA. [email protected].

PMID: 32483332 PMCID: PMC7610614 DOI: 10.1038/s41592-020-0837-5

Abstract

The transcriptome contains rich information on molecular, cellular and organismal phenotypes. However, experimental and statistical limitations constrain sensitivity and throughput of genetic screening with single-cell transcriptomics readout. To overcome these limitations, we introduce targeted Perturb-seq (TAP-seq), a sensitive, inexpensive and platform-independent method focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of thousands of CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly expressed genes, and decreases sequencing requirements by up to 50-fold. We apply TAP-seq to generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the human genome. We thereby show that enhancer-target association is jointly determined by three-dimensional contact frequency and epigenetic states, allowing accurate prediction of enhancer targets throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with only 100 sequencing reads per cell.

References

  1. Steinmetz, L. M. et al. Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404 (2002). - PubMed
  2. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999). - PubMed
  3. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018). - PubMed
  4. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016). - PubMed
  5. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896.e15 (2016). - PubMed
  6. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017). - PubMed
  7. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017). - PubMed
  8. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016). - PubMed
  9. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019). - PubMed
  10. Van Der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018). - PubMed
  11. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e24 (2019). - PubMed
  12. Cuomo, A. S. et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020). - PubMed
  13. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012). - PubMed
  14. Krivega, I. & Dean, A. Enhancer and promoter interactions—long distance calls. Curr. Opin. Genet. Dev. 22, 79–85 (2012). - PubMed
  15. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). - PubMed
  16. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). - PubMed
  17. Horlbeck, M. A. et al. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. Elife 5, e19760 (2016). - PubMed
  18. Hilton, I. B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015). - PubMed
  19. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016). - PubMed
  20. Hill, A. J. et al. On the design of CRISPR-based single-cell molecular screens. Nat. Methods 15, 271–274 (2018). - PubMed
  21. Zacher, B. et al. Accurate promoter and enhancer identification in 127 ENCODE and roadmap epigenomics cell types and tissues by GenoSTAN. PLoS One 12, e0169249 (2017). - PubMed
  22. Klann, T. S. et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561–568 (2017). - PubMed
  23. Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555, 54–60 (2018). - PubMed
  24. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015). - PubMed
  25. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22, 38–48 (2020). - PubMed
  26. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). - PubMed
  27. Fan, H. C., Fu, G. K. & Fodor, S. P. A. Combinatorial labeling of single cells for gene expression cytometry. Science 347, 1258367 (2015). - PubMed
  28. Shum, E. Y., Walczak, E. M., Chang, C. & Fan, H. C. in Advances in Experimental Medicine and Biology 63–79 (Springer, 2019). - PubMed
  29. Vallejo, A. F.et al. Resolving cellular systems by ultra-sensitive and economical single-cell transcriptome filtering. Preprint at bioRxiv https://doi.org/10.1101/800631 (2019). - PubMed
  30. Uzbas, F. et al. BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biol. 20, 155 (2019). - PubMed
  31. Dunn, S.-J., Martello, G., Yordanov, B., Emmott, S. & Smith, A. G. Defining an essential transcription factor program for naïve pluripotency. Science 344, 1156–1160 (2014). - PubMed
  32. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat. Methods 8, 341–346 (2011). - PubMed
  33. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2016). - PubMed
  34. Subramanian, A. et al. A next generation connectivity Map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017). - PubMed
  35. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015). - PubMed
  36. Li, K. et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485 (2020). - PubMed
  37. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018). - PubMed
  38. Datlinger, P. et al. Ultra-high throughput single-cell RNA sequencing by combinatorial fluidic indexing. Preprint at bioRxiv https://doi.org/10.1101/2019.12.17.879304 (2019). - PubMed
  39. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014). - PubMed
  40. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012). - PubMed
  41. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015). - PubMed
  42. Mendenhall, E. M. et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133–1136 (2013). - PubMed
  43. Deliu, E. et al. Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nat. Neurosci. 21, 1717–1727 (2018). - PubMed
  44. Velten, L. et al. Single-cell polyadenylation site mapping reveals 3′ isoform choice variability. Mol. Syst. Biol. 11, 812 (2015). - PubMed
  45. Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis article Single-Cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018). - PubMed
  46. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012). - PubMed
  47. Koressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291 (2007). - PubMed
  48. Schraivogel, D., Velten, L., Gschwind, A. R. & Steinmetz, L. M. A protocol for Targeted Perturb (TAP)-seq and targeted single-cell RNA-seq. Protoc. Exch. https://doi.org/10.21203/rs.3.pex-864/v1 (2020). - PubMed
  49. Tilgner, H. et al. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome Res. 28, 231–242 (2018). - PubMed
  50. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2009). - PubMed
  51. Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. 43, D1140–D1144 (2015). - PubMed
  52. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015). - PubMed
  53. Miao, Z., Deng, K., Wang, X. & Zhang, X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics 34, 3223–3224 (2018). - PubMed
  54. Korthauer, K. D. et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 17, 222 (2016). - PubMed
  55. Li, P. et al. Coordinated regulation of IFITM1, 2 and 3 genes by an IFN-responsive enhancer through long-range chromatin interactions. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 885–893 (2017). - PubMed

MeSH terms

Publication Types

Grant support