Display options
Share it on

Nat Nanotechnol. 2020 Aug;15(8):656-660. doi: 10.1038/s41565-020-0712-7. Epub 2020 Jun 15.

A Josephson phase battery.

Nature nanotechnology

Elia Strambini, Andrea Iorio, Ofelia Durante, Roberta Citro, Cristina Sanz-Fernández, Claudio Guarcello, Ilya V Tokatly, Alessandro Braggio, Mirko Rocci, Nadia Ligato, Valentina Zannier, Lucia Sorba, F Sebastián Bergeret, Francesco Giazotto

Affiliations

  1. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy. [email protected].
  2. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy. [email protected].
  3. Dipartimento di Fisica 'E. R. Caianiello', Università di Salerno, Fisciano, Italy.
  4. Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, San Sebastián, Spain.
  5. Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Donostia-San Sebastián, Spain.
  6. Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
  7. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy.
  8. Francis Bitter Magnet Laboratory and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
  9. Centro de Física de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, San Sebastián, Spain. [email protected].
  10. Donostia International Physics Center (DIPC), San Sebastián, Spain. [email protected].
  11. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy. [email protected].

PMID: 32541945 DOI: 10.1038/s41565-020-0712-7

Abstract

A classical battery converts chemical energy into a persistent voltage bias that can power electronic circuits. Similarly, a phase battery is a quantum device that provides a persistent phase bias to the wave function of a quantum circuit. It represents a key element for quantum technologies based on phase coherence. Here we demonstrate a phase battery in a hybrid superconducting circuit. It consists of an n-doped InAs nanowire with unpaired-spin surface states, that is proximitized by Al superconducting leads. We find that the ferromagnetic polarization of the unpaired-spin states is efficiently converted into a persistent phase bias φ

References

  1. Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ - PubMed
  2. Bergeret, F. S. & Tokatly, I. V. Theory of diffusive φ - PubMed
  3. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962). - PubMed
  4. Golubov, A. A., Kupriyanov, M. Y. & Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004). - PubMed
  5. Pal, S. & Benjamin, C. Quantized Josephson phase battery. EPL 126, 57002 (2019). - PubMed
  6. Yacoby, A., Schuster, R. & Heiblum, M. Phase rigidity and h/2e oscillations in a single-ring Aharonov-Bohm experiment. Phys. Rev. B 53, 9583–9586 (1996). - PubMed
  7. Strambini, E., Piazza, V., Biasiol, G., Sorba, L. & Beltram, F. Impact of classical forces and decoherence in multiterminal Aharonov-Bohm networks. Phys. Rev. B 79, 195443 (2009). - PubMed
  8. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001). - PubMed
  9. Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014). - PubMed
  10. Gingrich, E. C. et al. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016). - PubMed
  11. Silaev, M., Tokatly, I. & Bergeret, F. Anomalous current in diffusive ferromagnetic Josephson junctions. Phys. Rev. B 95, 184508 (2017). - PubMed
  12. Yokoyama, T. & Nazarov, Y. V. Magnetic anisotropy of critical current in nanowire Josephson junction with spin-orbit interaction. EPL 108, 47009 (2014). - PubMed
  13. Szombati, D. B. et al. Josephson φ - PubMed
  14. Assouline, A. et al. Spin-Orbit induced phase-shift in Bi - PubMed
  15. Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020). - PubMed
  16. Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015). - PubMed
  17. Giazotto, F. et al. A Josephson quantum electron pump. Nat. Phys. 7, 857–861 (2011). - PubMed
  18. Clarke, J. & Braginski, A. I. (eds) The SQUID Handbook (Wiley-VCH, 2004). - PubMed
  19. Sapkota, K. R., Maloney, F. S. & Wang, W. Observations of the Kondo effect and its coexistence with ferromagnetism in a magnetically undoped metal oxide nanostructure. Phys. Rev. B 97, 144425 (2018). - PubMed
  20. Dietl, T. & Ohno, H. Engineering magnetism in semiconductors. Mater. Today 9, 18–26 (2006). - PubMed
  21. Golod, T., Rydh, A. & Krasnov, V. M. Detection of the phase shift from a single Abrikosov vortex. Phys. Rev. Lett. 104, 227003 (2010). - PubMed
  22. Pita-Vidal, M. et al. A gate-tunable, field-compatible fluxonium. Preprint at arXiv:1910.07978 (2019). - PubMed
  23. Larsen, T. et al. Semiconductor-nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015). - PubMed
  24. Guarcello, C. & Bergeret, F. Cryogenic memory element based on an anomalous Josephson junction. Phys. Rev. Appl. 13, 034012 (2020). - PubMed
  25. Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012). - PubMed
  26. Virtanen, P., Bergeret, F. S., Strambini, E., Giazotto, F. & Braggio, A. Majorana bound states in hybrid two-dimensional Josephson junctions with ferromagnetic insulators. Phys. Rev. B 98, 020501 (2018). - PubMed
  27. Tiira, J. et al. Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions. Nat. Commun. 8, 14984 (2017). - PubMed
  28. Martelli, F. et al. Manganese-induced growth of GaAs nanowires. Nano Lett. 6, 2130–2134 (2006). - PubMed
  29. Strambini, E. et al. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy. Phys. Rev. Mater. 1, 054402 (2017). - PubMed
  30. Liu, Y. et al. Semiconductor-ferromagnetic insulator-superconductor nanowires: stray field and exchange field. Nano Lett. 20, 456–462 (2020). - PubMed

Publication Types

Grant support