Display options
Share it on

Cancers (Basel). 2020 Jun 12;12(6). doi: 10.3390/cancers12061546.

Radiation Dose Escalation is Crucial in Anti-CTLA-4 Antibody Therapy to Enhance Local and Distant Antitumor Effect in Murine Osteosarcoma.

Cancers

Wataru Takenaka, Yutaka Takahashi, Keisuke Tamari, Kazumasa Minami, Shohei Katsuki, Yuji Seo, Fumiaki Isohashi, Masahiko Koizumi, Kazuhiko Ogawa

Affiliations

  1. Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
  2. Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.

PMID: 32545427 PMCID: PMC7352693 DOI: 10.3390/cancers12061546

Abstract

We previously reported that a combination of 10 Gy of X-ray irradiation and dual immune checkpoint blockade with anti-CTLA-4 (C4) and anti-PD-L1 antibodies produced a significant shrinkage of irradiated and unirradiated tumors (abscopal effect) and prolonged overall survival. However, the optimal radiation delivery regimen combined with single immune checkpoint blockade of C4 for inducing a maximum systemic antitumor response still remains unclear, particularly for patients with osteosarcoma. We used syngeneic C3H mice that were subcutaneously injected with LM8 osteosarcoma cells into both legs. C4 was administered three times, and one side of the tumor was irradiated by X-ray beams. The optimal radiation dose required to induce the abscopal effect was explored with a focus on the induction of the type-I interferon pathway. Radiation delivered in a single fraction of 10 Gy, 4.5 Gy × 3 fractions (fx), and 2 Gy × 8 fx with C4 failed to produce significant inhibition of unirradiated tumor growth compared with monotherapy with C4. Dose escalation to 16 Gy in a single fraction, or the equivalent hypofractionated dose of 8 Gy × 3 fx, which significantly increased secretion of IFN-β in vitro, produced a dramatic regression of both irradiated and unirradiated tumors and prolonged overall survival in combination with C4. Furthermore, irradiation at 16 Gy in both a single fraction and 8 Gy × 3 fx diminished regulatory T cells in the unirradiated tumor microenvironment. These results suggest that total dose escalation of radiation is crucial in C4 therapy to enhance the antitumor response in both local and distant tumors and prolonged overall survival regardless of fractionation for osteosarcoma.

Keywords: abscopal effect; dose escalation; immune checkpoint blockade; osteosarcoma; radiation

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Sarcoma. 2013;2013:168145 - PubMed
  2. Cancer Treat Rev. 2015 Jun;41(6):503-10 - PubMed
  3. J Exp Med. 2011 Sep 26;208(10):2005-16 - PubMed
  4. Cancer Immunol Res. 2018 Aug;6(8):910-920 - PubMed
  5. Nature. 2015 Apr 16;520(7547):373-7 - PubMed
  6. J Immunother Cancer. 2018 Jun 4;6(1):46 - PubMed
  7. Science. 1996 Mar 22;271(5256):1734-6 - PubMed
  8. PLoS One. 2017 Sep 21;12(9):e0184891 - PubMed
  9. J Immunol Methods. 2012 Oct 31;384(1-2):157-63 - PubMed
  10. Cureus. 2019 Feb 20;11(2):e4103 - PubMed
  11. Lancet Oncol. 2009 Jul;10(7):718-26 - PubMed
  12. Cancer. 1992 Dec 1;70(11):2722-7 - PubMed
  13. Cancer Manag Res. 2018 Dec 21;11:167-177 - PubMed
  14. Int J Radiat Oncol Biol Phys. 1995 Sep 30;33(2):375-89 - PubMed
  15. Cureus. 2019 Nov 26;11(11):e6235 - PubMed
  16. Science. 2003 Feb 14;299(5609):1057-61 - PubMed
  17. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4612-E4620 - PubMed
  18. Int J Radiat Oncol Biol Phys. 1992;23(1):252-3 - PubMed
  19. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7 - PubMed
  20. Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):728-34 - PubMed
  21. J Exp Med. 2018 May 7;215(5):1287-1299 - PubMed
  22. Med Oncol. 2017 Aug 21;34(9):165 - PubMed
  23. Cancer. 2016 Jun 1;122(11):1659-71 - PubMed
  24. Uirusu. 2014;64(1):83-94 - PubMed
  25. Oncotarget. 2016 Dec 13;7(50):83502-83513 - PubMed
  26. Cancer Res. 1974 Dec;34(12):3326-31 - PubMed
  27. Clin Cancer Res. 2017 Sep 15;23(18):5514-5526 - PubMed
  28. Nat Protoc. 2008;3(6):1101-8 - PubMed
  29. Int J Cancer. 1998 May 4;76(3):418-22 - PubMed
  30. Cancer Med. 2016 Jul;5(7):1481-91 - PubMed
  31. PLoS One. 2017 Dec 18;12(12):e0189697 - PubMed
  32. Cancer Res. 2011 Apr 1;71(7):2488-96 - PubMed
  33. J Clin Invest. 2014 Feb;124(2):687-95 - PubMed
  34. Calcif Tissue Int. 2014 May;94(5):544-52 - PubMed
  35. Curr Oncol Rep. 2018 Mar 23;20(3):29 - PubMed
  36. Nat Commun. 2017 Jun 09;8:15618 - PubMed
  37. Mol Cell. 2014 Apr 24;54(2):289-96 - PubMed
  38. J Bone Oncol. 2019 Jan 29;15:100221 - PubMed
  39. Am J Dis Child. 1974 Apr;127(4):534-6 - PubMed
  40. Oncotarget. 2019 Jan 18;10(6):633-646 - PubMed
  41. Clin Cancer Res. 2009 Sep 1;15(17):5379-88 - PubMed
  42. Front Oncol. 2016 Jun 07;6:140 - PubMed
  43. Cancer. 1977 Feb;39(2):383-7 - PubMed
  44. Pediatr Blood Cancer. 2018 Sep;65(9):e27227 - PubMed
  45. J Immunol. 2012 Nov 1;189(9):4630-9 - PubMed
  46. Cell Res. 2019 Oct;29(10):846-861 - PubMed
  47. Oncoimmunology. 2018 Mar 15;7(7):e1440168 - PubMed
  48. Nature. 2011 Dec 21;480(7378):480-9 - PubMed
  49. Curr Opin Virol. 2016 Feb;16:31-40 - PubMed
  50. Blood. 2009 Jul 16;114(3):589-95 - PubMed
  51. Toxins (Basel). 2014 Mar 03;6(3):914-33 - PubMed
  52. PLoS One. 2014 Mar 31;9(3):e92572 - PubMed
  53. Cancer Res. 2014 Oct 1;74(19):5458-68 - PubMed
  54. Eur J Immunol. 2010 Jul;40(7):1830-5 - PubMed
  55. Cancer Res. 2005 Feb 1;65(3):1089-96 - PubMed
  56. Cancer Manag Res. 2019 Dec 24;11:10731-10747 - PubMed
  57. Trends Immunol. 2018 Aug;39(8):644-655 - PubMed
  58. Oncologist. 2004;9(4):422-41 - PubMed
  59. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2969-74 - PubMed
  60. Cureus. 2018 Aug 2;10(8):e3089 - PubMed

Publication Types

Grant support