Display options
Share it on

Quant Imaging Med Surg. 2020 May;10(5):1080-1120. doi: 10.21037/qims.2020.04.07.

Pulse sequences as tissue property filters (TP-filters): a way of understanding the signal, contrast and weighting of magnetic resonance images.

Quantitative imaging in medicine and surgery

Ian R Young, Nikolaus M Szeverenyi, Jiang Du, Graeme M Bydder

Affiliations

  1. Formerly Department of Electrical Engineering, Imperial College of Science, Technology, and Medicine, London, UK.
  2. Department of Radiology, University of California San Diego, San Diego, USA.

PMID: 32489930 PMCID: PMC7242304 DOI: 10.21037/qims.2020.04.07

Abstract

This paper describes a quantitative approach to understanding the signal, contrast and weighting of magnetic resonance (MR) images. It uses the concept of pulse sequences as tissue property (TP) filters and models the signal, contrast and weighting of sequences using either a single TP-filter (univariate model) or several TP-filters (the multivariate model). For the spin echo (SE) sequence using the Bloch equations, voxel signal intensity is plotted against the logarithm of the value of the TPs contributing to the sequence signal to produce three TP-filters, an exponential ρ

2020 Quantitative Imaging in Medicine and Surgery. All rights reserved.

Keywords: Magnetic resonance (MR) imaging; contrast; filters; phase; pulse sequences; quantitation; signal; tissue properties (TPs); weighting

Conflict of interest statement

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/qims.2020.04.07). JD serves as an unpaid editorial board member of Quantita

References

  1. Med Phys. 1983 Sep-Oct;10(5):610-21 - PubMed
  2. Radiology. 1987 Mar;162(3):874 - PubMed
  3. Magn Reson Imaging. 2005 Jun;23(5):611-8 - PubMed
  4. Radiology. 2020 Feb;294(2):362-374 - PubMed
  5. Magn Reson Med. 2007 Feb;57(2):308-18 - PubMed
  6. Nature. 2013 Mar 14;495(7440):187-92 - PubMed
  7. J Comput Assist Tomogr. 1987 Jan-Feb;11(1):7-16 - PubMed
  8. J Comput Assist Tomogr. 1985 Jul-Aug;9(4):659-75 - PubMed
  9. J Comput Assist Tomogr. 1984 Oct;8(5):819-28 - PubMed
  10. Radiology. 1988 Mar;166(3):679-85 - PubMed
  11. Clin Radiol. 1982 Jul;33(4):395-414 - PubMed
  12. Magn Reson Med. 2004 Oct;52(4):815-24 - PubMed
  13. Radiology. 1993 Jan;186(1):1-8 - PubMed
  14. AJR Am J Roentgenol. 1988 May;150(5):1133-42 - PubMed
  15. Magn Reson Imaging. 2007 Dec;25(10):1397-401 - PubMed
  16. Magn Reson Med. 1984 Sep;1(3):414-33 - PubMed
  17. Radiology. 1983 Oct;149(1):181-7 - PubMed
  18. J Comput Assist Tomogr. 1988 Jan-Feb;12(1):130-4 - PubMed
  19. J Cardiovasc Magn Reson. 2010 Nov 19;12:69 - PubMed
  20. NMR Biomed. 2001 Apr;14(2):57-64 - PubMed
  21. Eur Radiol. 2003 Nov;13(11):2409-18 - PubMed
  22. AJR Am J Roentgenol. 1989 Aug;153(2):419-25 - PubMed
  23. J Comput Assist Tomogr. 1992 Jan-Feb;16(1):7-18 - PubMed
  24. Br J Radiol. 1994 Dec;67(804):1258-63 - PubMed
  25. J Comput Assist Tomogr. 2001 Mar-Apr;25(2):251-6 - PubMed
  26. Magn Reson Med. 2004 Sep;52(3):612-8 - PubMed
  27. Radiology. 2019 Sep;292(3):685-694 - PubMed
  28. Invest Radiol. 1998 Sep;33(9):560-72 - PubMed
  29. J Comput Assist Tomogr. 2010 May-Jun;34(3):317-31 - PubMed
  30. Radiology. 1989 Aug;172(2):381-5 - PubMed
  31. J Comput Assist Tomogr. 2003 Nov-Dec;27(6):825-46 - PubMed
  32. Magn Reson Med. 1993 May;29(5):695-9 - PubMed
  33. J Comput Assist Tomogr. 1983 Aug;7(4):575-84 - PubMed
  34. Med Phys. 1984 Jul-Aug;11(4):425-48 - PubMed

Publication Types