Display options
Share it on

Heliyon. 2020 May 27;6(5):e04048. doi: 10.1016/j.heliyon.2020.e04048. eCollection 2020 May.

Nanotechnology based strategies for HIV-1 and HTLV-1 retroviruses gene detection.

Heliyon

Sayed-Hamidreza Mozhgani, Hanie Ahmadzade Kermani, Mehdi Norouzi, Mohsen Arabi, Saber Soltani

Affiliations

  1. Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
  2. Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
  3. Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
  4. Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
  5. Department of Physiology, Pharmacology and Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.

PMID: 32490248 PMCID: PMC7260287 DOI: 10.1016/j.heliyon.2020.e04048

Abstract

Early detection of retroviruses including human T-cell lymphotropic virus and human immunodeficiency virus in the human body is indispensable to prevent retroviral infection propagation and improve clinical treatment. Until now, diverse techniques have been employed for the early detection of viruses. Traditional methods are time-consuming, resource-intensive, and laborious performing. Therefore, designing and constructing a selective and sensitive diagnosis system to detect serious diseases is highly demanded. Genetic detection with high sensitivity has striking significance for the early detection and remedy of disparate pathogenic diseases. The nucleic acid biosensors are based on the identification of specific DNA sequences in biological samples. Nanotechnology has an important impact on the development of sensitive biosensors. Different kinds of nanomaterials include nanoparticles, nanoclusters, quantum dots, carbon nanotubes, nanocomposites, etc., with different properties have been used to improve the performance of biosensors. Recently, DNA nanobiosensors are developed to provide simple, fast, selective, low-cost, and sensitive detection of infectious diseases. In this paper, the research progresses of nano genosensors for the detection of HIV-1 and HTLV-1 viruses, based on electrochemical, optical, and photoelectrochemical platforms are overviewed.

© 2020 Published by Elsevier Ltd.

Keywords: Analytical chemistry; DNA nanobiosensors; Early detection; Human T-cell lymphotropic virus (HTLV); Human immunodeficiency virus (HIV); Infectious disease; Nanotechnology

References

  1. Biosens Bioelectron. 2016 Nov 15;85:837-843 - PubMed
  2. J Clin Microbiol. 2002 Jun;40(6):1938-46 - PubMed
  3. Methods Mol Biol. 2018;1811:173-182 - PubMed
  4. Gene. 1984 Jun;28(3):351-9 - PubMed
  5. J Clin Microbiol. 1988 Aug;26(8):1487-91 - PubMed
  6. Intervirology. 2017;60(4):144-148 - PubMed
  7. J Chem Phys. 2012 May 28;136(20):204701 - PubMed
  8. Biosens Bioelectron. 2017 Mar 15;89(Pt 1):565-569 - PubMed
  9. Neurodegener Dis. 2018;18(2-3):150-155 - PubMed
  10. Biosens Bioelectron. 2018 Oct 15;117:332-339 - PubMed
  11. J Cell Physiol. 2019 Aug;234(8):12433-12441 - PubMed
  12. Biosens Bioelectron. 2016 Apr 15;78:530-537 - PubMed
  13. Biosens Bioelectron. 2017 Mar 15;89(Pt 2):773-780 - PubMed
  14. Sens Actuators B Chem. 2019 Oct 1;296:126608 - PubMed
  15. Biosens Bioelectron. 2019 May 15;133:55-63 - PubMed
  16. Biosens Bioelectron. 2018 Feb 15;100:228-234 - PubMed
  17. ACS Nano. 2014 Nov 25;8(11):11666-73 - PubMed
  18. Mikrochim Acta. 2019 Apr 15;186(5):286 - PubMed
  19. Nanoscale. 2018 Sep 20;10(36):17206-17211 - PubMed
  20. ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1188-93 - PubMed
  21. Science. 1997 Feb 21;275(5303):1102-6 - PubMed
  22. Chem Soc Rev. 2016 Aug 7;45(15):4199-225 - PubMed
  23. Anal Bioanal Chem. 2009 May;394(1):47-59 - PubMed
  24. Sci Rep. 2018 Oct 22;8(1):15593 - PubMed
  25. ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18872-9 - PubMed
  26. Biosens Bioelectron. 2018 Dec 15;121:205-222 - PubMed
  27. Biosens Bioelectron. 2015 Dec 15;74:318-21 - PubMed
  28. Chem Commun (Camb). 2006 Aug 14;(30):3205-7 - PubMed
  29. J Clin Microbiol. 2000 Nov;38(11):4049-57 - PubMed
  30. Nat Biotechnol. 2010 Nov;28(11):1208-12 - PubMed
  31. Biosens Bioelectron. 2018 May 15;105:211-217 - PubMed
  32. Anal Chem. 2015 Jun 2;87(11):5496-9 - PubMed
  33. Biosens Bioelectron. 2013 Sep 15;47:62-7 - PubMed
  34. J Agric Food Chem. 2015 Oct 21;63(41):9159-64 - PubMed
  35. ACS Appl Mater Interfaces. 2018 Mar 7;10(9):7852-7858 - PubMed
  36. Biosens Bioelectron. 2011 Jul 15;26(11):4355-61 - PubMed
  37. Anal Bioanal Chem. 2016 Jun;408(16):4311-8 - PubMed
  38. Chem Commun (Camb). 2011 Nov 28;47(44):12116-8 - PubMed
  39. Anal Chim Acta. 2017 Apr 15;962:80-87 - PubMed
  40. Transfusion. 2002 Jun;42(6):780-91 - PubMed
  41. Anal Chem. 2012 Oct 2;84(19):8277-83 - PubMed
  42. Nature. 2003 Aug 14;424(6950):824-30 - PubMed
  43. J Am Chem Soc. 2010 Feb 17;132(6):1816-8 - PubMed
  44. J Am Chem Soc. 2013 Apr 24;135(16):5998-6001 - PubMed
  45. IDCases. 2016 Apr 07;4:53-5 - PubMed
  46. Annu Rev Biochem. 2012;81:795-822 - PubMed
  47. Chem Commun (Camb). 2015 Feb 11;51(12):2392-5 - PubMed
  48. Anal Chem. 1993 Jun 15;65(12):396R-400R - PubMed
  49. J Infect Dis. 2000 Oct;182(4):1044-50 - PubMed
  50. Lancet. 1991 Aug 24;338(8765):512-3 - PubMed
  51. Biosens Bioelectron. 2019 Aug 15;139:111325 - PubMed
  52. Heliyon. 2018 Dec 05;4(12):e00996 - PubMed
  53. Front Microbiol. 2017 Aug 02;8:1425 - PubMed
  54. Anal Chem. 2018 Nov 20;90(22):13373-13377 - PubMed
  55. Talanta. 2018 May 1;181:24-31 - PubMed
  56. J Med Virol. 2017 Jun;89(6):1102-1107 - PubMed
  57. Syst Rev. 2019 May 6;8(1):110 - PubMed
  58. J Clin Microbiol. 1999 May;37(5):1324-8 - PubMed
  59. Analyst. 2013 Oct 7;138(19):5745-50 - PubMed
  60. Anal Chim Acta. 2019 May 9;1055:7-16 - PubMed
  61. Analyst. 2010 May;135(5):1084-9 - PubMed
  62. Mikrochim Acta. 2018 Jan 16;185(2):119 - PubMed
  63. Biosens Bioelectron. 2011 Jan 15;26(5):2130-4 - PubMed
  64. Angew Chem Int Ed Engl. 2010 Aug 2;49(33):5708-11 - PubMed
  65. Faraday Discuss. 2004;125:117-32; discussion 195-219 - PubMed
  66. ACS Appl Mater Interfaces. 2015 May 13;7(18):10013-21 - PubMed
  67. Biosens Bioelectron. 2017 Aug 15;94:471-477 - PubMed
  68. Chem Rev. 2010 May 12;110(5):2685-708 - PubMed
  69. Front Microbiol. 2013 Dec 23;4:372 - PubMed
  70. Analyst. 2016 May 10;141(10):2998-3003 - PubMed
  71. Biosens Bioelectron. 2014 Apr 15;54:285-91 - PubMed
  72. Anal Chem. 2017 Jun 6;89(11):5900-5908 - PubMed
  73. Phys Rev Lett. 2006 Mar 24;96(11):113002 - PubMed
  74. Chem Commun (Camb). 2015 Mar 11;51(20):4220-2 - PubMed
  75. Curr Opin Cell Biol. 1991 Jun;3(3):502-7 - PubMed
  76. Analyst. 2004 Aug;129(8):672-7 - PubMed
  77. Biosens Bioelectron. 2018 Jun 30;109:190-196 - PubMed
  78. Anal Chem. 2013 Oct 1;85(19):9213-20 - PubMed
  79. Biosens Bioelectron. 2014 May 15;55:266-71 - PubMed
  80. Chem Rev. 2013 Mar 13;113(3):1391-428 - PubMed
  81. PLoS One. 2019 Mar 21;14(3):e0214059 - PubMed
  82. Anal Chem. 2012 Jul 3;84(13):5535-41 - PubMed
  83. J Pharm Biomed Anal. 2018 Sep 10;159:425-436 - PubMed
  84. Chem Soc Rev. 2015 Aug 7;44(15):5320-40 - PubMed
  85. Adv Colloid Interface Sci. 2018 Jun;256:326-339 - PubMed
  86. ACS Appl Mater Interfaces. 2016 Jun 8;8(22):13707-13 - PubMed
  87. J Infect Dis. 1999 Oct;180(4):1089-95 - PubMed
  88. ACS Nano. 2015 May 26;9(5):5609-17 - PubMed
  89. Biosens Bioelectron. 2009 Apr 15;24(8):2730-4 - PubMed

Publication Types