Display options
Share it on

Proc Math Phys Eng Sci. 2020 May;476(2237):20190739. doi: 10.1098/rspa.2019.0739. Epub 2020 May 13.

Reconstructing ecological networks with noisy dynamics.

Proceedings. Mathematical, physical, and engineering sciences

Mara A Freilich, Rolando Rebolledo, Derek Corcoran, Pablo A Marquet

Affiliations

  1. Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program, Cambridge, MA, USA.
  2. Instituto de Ingeniería Matemática, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile.
  3. Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
  4. Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile.
  5. The Santa Fe Institute, Santa Fe, NM, USA.
  6. Instituto de Sistemas Complejos de Valparaíso (ISCV), Valparaíso, Chile.

PMID: 32523410 PMCID: PMC7277133 DOI: 10.1098/rspa.2019.0739

Abstract

Ecosystems functioning is based on an intricate web of interactions among living entities. Most of these interactions are difficult to observe, especially when the diversity of interacting entities is large and they are of small size and abundance. To sidestep this limitation, it has become common to infer the network structure of ecosystems from time series of species abundance, but it is not clear how well can networks be reconstructed, especially in the presence of stochasticity that propagates through ecological networks. We evaluate the effects of intrinsic noise and network topology on the performance of different methods of inferring network structure from time-series data. Analysis of seven different four-species motifs using a stochastic model demonstrates that star-shaped motifs are differentially detected by these methods while rings are differentially constructed. The ability to reconstruct the network is unaffected by the magnitude of stochasticity in the population dynamics. Instead, interaction between the stochastic and deterministic parts of the system determines the path that the whole system takes to equilibrium and shapes the species covariance. We highlight the effects of long transients on the path to equilibrium and suggest a path forward for developing more ecologically sound statistical techniques.

© 2020 The Author(s).

Keywords: ecological networks; food webs; network inference; stochastic model

References

  1. Nat Rev Microbiol. 2012 Jul 16;10(8):538-50 - PubMed
  2. Ecology. 2018 Mar;99(3):557-566 - PubMed
  3. Cell. 2018 Jun 14;173(7):1581-1592 - PubMed
  4. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13111-6 - PubMed
  5. J Theor Biol. 2010 Jan 21;262(2):323-9 - PubMed
  6. ISME J. 2011 Sep;5(9):1414-25 - PubMed
  7. J R Soc Interface. 2017 Feb;14(127): - PubMed
  8. Trends Ecol Evol. 2005 Jun;20(6):345-53 - PubMed
  9. BMC Bioinformatics. 2012 May 30;13:113 - PubMed
  10. Ecology. 2018 Mar;99(3):690-699 - PubMed
  11. Science. 1999 Apr 9;284(5412):334-6 - PubMed
  12. Anim Genet. 2012 Jul;43 Suppl 1:19-35 - PubMed
  13. ACS Synth Biol. 2015 Mar 20;4(3):258-64 - PubMed
  14. ISME J. 2016 Jul;10(7):1669-81 - PubMed
  15. Sci Rep. 2017 Dec 1;7(1):16815 - PubMed
  16. Nat Rev Microbiol. 2009 Feb;7(2):129-43 - PubMed
  17. J Theor Biol. 2011 Jan 21;269(1):150-65 - PubMed
  18. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19033-8 - PubMed
  19. Front Microbiol. 2014 May 20;5:219 - PubMed
  20. FEMS Microbiol Rev. 2018 Nov 1;42(6):761-780 - PubMed
  21. PLoS One. 2009 May 28;4(5):e5725 - PubMed
  22. PLoS One. 2014 Jul 23;9(7):e102451 - PubMed
  23. mSystems. 2018 Aug 28;3(4): - PubMed
  24. Nature. 2000 Mar 9;404(6774):180-3 - PubMed
  25. Curr Opin Microbiol. 2015 Jun;25:56-66 - PubMed
  26. Science. 2002 Oct 25;298(5594):824-7 - PubMed

Publication Types