Display options
Share it on

Sci Rep. 2020 Jun 11;10(1):9451. doi: 10.1038/s41598-020-66124-4.

Electromyographic activity of the vastus medialis and gastrocnemius implicates a slow stretch-shortening cycle during rowing in the field.

Scientific reports

Steffen Held, Tobias Siebert, Lars Donath

Affiliations

  1. Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany. [email protected].
  2. Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.
  3. Department of Intervention Research in Exercise Training, German Sport University Cologne, Cologne, Germany.

PMID: 32528173 PMCID: PMC7289868 DOI: 10.1038/s41598-020-66124-4

Abstract

The consideration of the temporal and electromyographic (EMG) characteristics of stretch-shortening cycles (SSC) are crucial for the conceptualization of discipline-specific testing and training. Since leg muscles are first stretched (eccentric) and then contracted (concentric) during rowing, it can be assumed that the entire muscle tendon complex performs a SSC. Thus, it should be elucidated whether the rowing cycle can be attributed to either a slow or fast SSC. Therefore, EMG of the vastus medialis and gastrocnemius were captured (n = 10, 22.8 ± 3.1 years, 190 ± 6 cm, 82.1 ± 9.8 kg) during (single scull) rowing and subsequently compared to typical slow (countermovement jump, CMJ) and fast (drop jump, DJ) SSCs. The elapsed time between the EMG onset and the start of the eccentric phase was monitored. The pre-activation phase (PRE, before the start of the eccentric phase) and the reflex-induced activation phase (RIA 30-120 ms after the start of the eccentric phase) have been classified. Notable muscular activity was observed during DJ before the start of the eccentric phase (PRE) as well as during RIA. In contrast, neither CMJ nor rowing revealed any EMG-activity in these two phases. Interestingly, CMJ and race-specific rowing showed an EMG-onset during the eccentric phase. We conclude that rowing is more attributable to a slow SSC and implies that fast SSC does not reflect discipline specific muscle action and could hamper rowing-performance-enhancement.

References

  1. Komi, P. V. Stretch-Shortening Cycle. In Strength and Power in Sport (ed. Komi, P. V) 184–204 (Blackwell Science Publication, 2003). - PubMed
  2. Cavagna, G. A., Dusman, B. & Margaria, R. Positive work done by a previously stretched muscle. J. Appl. Physiol. 24, 21–32 (1968). - PubMed
  3. Gregor, R. J. et al. Mechanical output of the cat soleus during treadmill locomotion: in vivo vs in situ characteristics. J. Biomech. 21, 721–32 (1988). - PubMed
  4. Bosco, C. et al. Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur. J. Appl. Physiol. Occup. Physiol. 56, 138–43 (1987). - PubMed
  5. Aura, O. & Komi, P. V. The mechanical efficiency of locomotion in men and women with special emphasis on stretch-shortening cycle exercises. Eur. J. Appl. Physiol. Occup. Physiol. 55, 37–43 (1986). - PubMed
  6. Dawson, T. & Taylor, R. Energetic Cost of Locomotion in Kangaroos. Nature 246, 313–314 (1973). - PubMed
  7. Seiberl, W., Power, G. A., Herzog, W. & Hahn, D. The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis. Physiol. Rep. 3, e12401 (2015). - PubMed
  8. Kubo, K., Kawakami, Y. & Fukunaga, T. Influence of elastic properties of tendon structures on jump performance in humans. J. Appl. Physiol. 87, 2090–2096 (1999). - PubMed
  9. Bojsen-Møller, J., Magnusson, S. P., Rasmussen, L. R., Kjaer, M. & Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 99, 986–994 (2005). - PubMed
  10. Rode, C., Siebert, T. & Blickhan, R. Titin-induced force enhancement and force depression: A ‘sticky-spring’ mechanism in muscle contractions? J. Theor. Biol. 259, 350–360 (2009). - PubMed
  11. Schenau, G. J., van, I., Bobbert, M. F. & de Haan, A. Mechanics and Energetics of the Stretch-Shortening Cycle: A Stimulating Discussion. J. Appl. Biomech. 13, 484–496 (1997). - PubMed
  12. Schenau, G. J., van, I., Bobbert, M. F. & de Haan, A. Does Elastic Energy Enhance Work and Efficiency in the Stretch-Shortening Cycle? J. Appl. Biomech. 13, 389–415 (1997). - PubMed
  13. Schmidtbleicher, D. Training for power events. In The Encyclopeadia of Sports Medicine. Vol 3: Strength and Power in sport (ed. Komi, P. V) 169–179 (Blackwell, 1992). - PubMed
  14. Duncan, M. & Lyons, M. The stretch shortening cycle: a brief overview. Adv. Strength Cond. Res. 1, 7–12 (2009). - PubMed
  15. Frick, U. Kraftausdauerverhalten im Dehnungs-Verkürzungs-Zyklus. (Strauß, 1993). - PubMed
  16. Gollhofer, A., Komi, P., Miyashita, M. & Aura, O. Fatigue During Stretch-Shortening Cycle Exercises: Changes in Mechanical Performance of Human Skeletal Muscle. Int. J. Sports Med. 08, 71–78 (1987). - PubMed
  17. Kleshnev, V. The Biomechanics of Rowing. (Crowood Press, 2016). - PubMed
  18. Fleming, N., Donne, B. & Mahony, N. A comparison of electromyography and stroke kinematics during ergometer and on-water rowing. J. Sports Sci. 32, 1127–1138 (2014). - PubMed
  19. Shaharudin, S., Zanotto, D. & Agrawal, S. Muscle Synergy during Wingate Anaerobic Rowing Test of Collegiate Rowers and Untrained Subjects. International. Journal of Sports Science 4, 165–172 (2014). - PubMed
  20. Guével, A. et al. Thigh Muscle Activities in Elite Rowers During On-Water Rowing. Int. J. Sports Med. 32, 109–116 (2011). - PubMed
  21. Turpin, N. A., Guével, A., Durand, S. & Hug, F. Effect of power output on muscle coordination during rowing. Eur. J. Appl. Physiol. 111, 3017–3029 (2011). - PubMed
  22. Janshen, L., Mattes, K. & Tidow, G. Muscular coordination of the lower extremities of oarsmen during ergometer rowing. J. Appl. Biomech. 25, 156–164 (2009). - PubMed
  23. Gee, T. I., Olsen, P. D., Berger, N. J., Golby, J. & Thompson, K. G. Strength and Conditioning Practices in Rowing. J. Strength Cond. Res. 25, 668–682 (2011). - PubMed
  24. McNeely, E. Plyometrics in Strength. Training. J. Compet. Rowing 7, 22–23 (2000). - PubMed
  25. McNeely, E. Jump training for rowers part. Peak Centre (2009). Available at, https://peakcentre.wordpress.com/2009/02/03/jump-training-for-rowers-part-i/ . (Accessed: 20th October 2019). - PubMed
  26. Loch, S. Lots of Watts. (The Watt Farm, 2017). - PubMed
  27. Kramer, J., Morrow, A. & Leger, A. Changes in Rowing Ergometer, Weight Lifting, Vertical Jump and Isokinetic Performance in Response to Standard and Standard Plus Plyometric Training Programs. Int. J. Sports Med. 14, 449–454 (1993). - PubMed
  28. Egan-Shuttler, J. D., Edmonds, R., Eddy, C., O’Neill, V. & Ives, S. J. The Effect of Concurrent Plyometric Training Versus Submaximal Aerobic Cycling on Rowing Economy, Peak Power, and Performance in Male High School Rowers. Sport. Med. - Open 3, 7 (2017). - PubMed
  29. Altenburg, D., Mattes, K. & Steinacker, J. M. Handbuch Rudertraining: Technik –Leistung – Planung. (Limpert, 2013). - PubMed
  30. Nicol, C., Avela, J. & Komi, P. V. The Stretch-Shortening Cycle. Sport. Med. 36, 977–999 (2006). - PubMed
  31. Held, S., Siebert, T. & Donath, L. Changes in mechanical power output in rowing by varying stroke rate and gearing. Eur. J. Sport Sci. 1–9, https://doi.org/10.1080/17461391.2019.1628308 (2019). - PubMed
  32. Harriss, D. & Atkinson, G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int. J. Sports Med. 36, 1121–1124 (2015). - PubMed
  33. Wirth, K., Sander, A., Keiner, M. & Schmidtbleicher, D. Leistungsfähigkeit im Dehnungs-Verkürzungs-Zyklus sportlich aktiver und inaktiver Kinder und Jugendlicher. Dtsch. Z. Sportmed. 62 (2011). - PubMed
  34. Dias, J. A. et al. Validity of Two Methods for Estimation of Vertical Jump Height. J. Strength Cond. Res. 25, 2034–2039 (2011). - PubMed
  35. Frick, U., Schmidtbleicher, D. & Wörn, C. Vergleich biomechanischer Meßverfahren zur Bestimmung der Sprunghöhe bei Vertikalsprüngen. Leistungssport 21, 48–53 (1991). - PubMed
  36. Lombard, W. The action of two-joint muscles. Am. Physiol. Educ. 141–145 (1903). - PubMed
  37. Ertelt, T., Ertelt, H. J. & Blickhan, R. The geometry-critical functionala dependence of m. gastrocnemius. Int. J. Appl. Mech. 03, 85–98 (2011). - PubMed
  38. Hermens, H. J., Freriks, B., Disselhorst-Klug, C. & Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–74 (2000). - PubMed
  39. De Luca, C. J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 13, 135–163 (1997). - PubMed
  40. Gollhofer, A., Horstmann, G., Schmidtbleicher, D. & Schönthal, D. Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur. J. Appl. Physiol. Occup. Physiol. 60, 7–14 (1990). - PubMed
  41. Bubeck, D. & Gollhofer, A. Load induced changes of jump performance and activation patterns in free drop jump exercises and sledge jumps. Eur. J. Sport Sci. 1, 1–17 (2001). - PubMed
  42. Schmidtbleicher, D., Gollhofer, A. & Frick, U. Effects of stretch shortening type training of the performance capability and innervation characteristics of leg extensor muscles. In International series on biomechanics, biomechanics X1-A (eds. De Groot, G., Hollander, A., Huijing, P. & Van Ingen Schenau, G.) 185–189 (Free University Press, 1987). - PubMed
  43. Cohen, J. Statistical power analysis for the behavioral sciences. (Lawrence Earlbaum Associates, 1988). - PubMed
  44. Grillner, S. The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol. Scand. 86, 92–108 (1972). - PubMed
  45. Dietz, V., Schmidtbleicher, D. & Noth, J. Neuronal mechanisms of human locomotion. J. Neurophysiol. 42, 1212–22 (1979). - PubMed
  46. Desmedt, J. E. & Godaux, E. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J. Physiol. 264, 673–93 (1977). - PubMed
  47. Santello, M. & McDonagh, M. J. The control of timing and amplitude of EMG activity in landing movements in humans. Exp. Physiol. 83, 857–74 (1998). - PubMed
  48. Dietz, V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol. Rev. 72, 33–69 (1992). - PubMed
  49. Avela, J. & Komi, P. V. Reduced stretch reflex sensitivity and muscle stiffness after long-lasting stretch-shortening cycle exercise in humans. Eur. J. Appl. Physiol. Occup. Physiol. 78, 403–10 (1998). - PubMed
  50. Thilmann, A. F., Schwarz, M., Töpper, R., Fellows, S. J. & Noth, J. Different mechanisms underlie the long-latency stretch reflex response of active human muscle at different joints. J. Physiol. 444, 631–643 (1991). - PubMed
  51. Zuur, A. T. et al. Contribution of afferent feedback and descending drive to human hopping. J. Physiol. 588, 799–807 (2010). - PubMed
  52. Gollhofer, A., Strojnik, V., Rapp, W. & Schweizer, L. Behaviour of triceps surae muscle-tendon complex in different jump conditions. Eur. J. Appl. Physiol. Occup. Physiol. 64, 283–291 (1992). - PubMed
  53. Marsden, C., Merton, P., Morton, H. & Adam, J. The effect of lesions of the central nervous system on long-latency stretch reflexes in the human thumb. In Cerebral motor control in man: long loop mechanisms (ed. Desmedt, J.) 334–341 (Karger, 1978). - PubMed
  54. Gollhofer, A. Functional role of proprioceptive feedback in balance and in reactive movement. 27 Int. Conf. Biomech. Sport. (2009). - PubMed
  55. Vogel, T. Influence of visual control over muscular preactivation and impact force of the lower extremity during drop jumps. (Dissertation, 2006). - PubMed
  56. Berton, R., Lixandrão, M. E., Pinto e Silva, C. M. & Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: a meta-analysis. J. Sports Sci. 36, 2038–2044 (2018). - PubMed
  57. Stojanović, E., Ristić, V., McMaster, D. T. & Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 47, 975–986 (2017). - PubMed
  58. Steinacker, J. M., Lormes, W., Lehmann, M. & Altenburg, D. Training of rowers before world championships. Med. Sci. Sports Exerc. 30, 1158–63 (1998). - PubMed
  59. Guellich, A., Seiler, S. & Emrich, E. Training methods and intensity distribution of young world-class rowers. Int. J. Sports Physiol. Perform. 4, 448–60 (2009). - PubMed
  60. Bourgois, J., Steyaert, A. & Boone, J. Physiological and Anthropometric Progression in an International Oarsman: A 15-Year Case Study. Int. J. Sports Physiol. Perform. 9, 723–726 (2014). - PubMed
  61. Guellich, A. & Schmidtbleicher, D. Struktur der Kraftfähigkeiten und ihrer Trainingsmethoden. Dtsch. Z. Sportmed. 50 (1999). - PubMed
  62. McNeely, E. Building Strength. In Rowing Faster (ed. Nolte, V.) 87–89 (Human Kinetics, 2005). - PubMed
  63. Heyden, G. Krafttraining beim Rudern. Möglichkeiten und Grenzen verschiedener Trainingsmethoden. Available at, http://www.hs.tudortmund.de/rudersymposium/abstracts/pdf-dateien/3-8-heyden-krafttraining-beimrudern.pdf (2010). - PubMed
  64. Farina, D., Merletti, R., Nazzaro, M. & Caruso, I. Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng. Med. Biol. Mag. 20, 62–71 (2001). - PubMed
  65. Vieira, T. M. M., Loram, I. D., Muceli, S., Merletti, R. & Farina, D. Postural activation of the human medial gastrocnemius muscle: Are the muscle units spatially localised? J. Physiol. 589, 431–443 (2011). - PubMed
  66. Vieira, T., Botter, A., Gazzoni, M., Merlo, A. & Campanini, I. Does electrode location affect the estimation of onset and degree of medial gastrocnemius activity during gait? Gait Posture 57, 32 (2017). - PubMed

Publication Types