Display options
Share it on

Mol Reprod Dev. 2020 Jun 27; doi: 10.1002/mrd.23397. Epub 2020 Jun 27.

l-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses.

Molecular reproduction and development

Ingrid S Garcia, Susana A Teixeira, Karine A Costa, Daniele B D Marques, Gustavo de A Rodrigues, Thaís C Costa, José D Guimarães, Pamela I Otto, Alysson Saraiva, Adriana M G Ibelli, Maurício E Cantão, Haniel C de Oliveira, Mônica C Ledur, Jane de O Peixoto, Simone E F Guimarães

Affiliations

  1. Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil.
  2. Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil.
  3. Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil.

PMID: 32592179 DOI: 10.1002/mrd.23397

Abstract

Dietary l-arginine (ARG) supplementation has been studied as a nutritional strategy to improve reproductive performance of pregnant sows, since arginine is a conditionally essential amino acid. However, reports addressing the molecular mechanisms that mediate supplementation effects on embryos and fetuses development are still scarce. Therefore, we aimed to evaluate the effects of 1.0% ARG supplementation of commercial pregnant gilts on genes and proteins from energy metabolism and antioxidant defense pathways in embryos and fetuses. We also analyzed the global transcriptome profile of 25- and 35-day-old conceptuses. At Day 25, we observed a lower abundance of phospho-AMP-activated protein kinase (phospho-AMPK) protein and downregulation of oxidative phosphorylation system genes in ARG embryos. On the other hand, ARG fetuses showed greater expression of MLST8 and lower expression of MTOR genes, in addition to lower abundance of phospho-AMPK and phospho-mammalian target of rapamycin (phospho-mTOR) proteins. Transcriptome analysis at Day 35 did not present differentially expressed genes. For the antioxidant defense pathway, no differences were found between CON and ARG conceptuses, only trends. In general, supplementation of gilts with 1.0% ARG during early gestation affects energy sensitive pathways in 25- and 35-day conceptuses; however, no effects of supplementation were found on the antioxidative defense pathway in 25-day embryos.

© 2020 Wiley Periodicals LLC.

Keywords: RNA-seq; amino acid supplementation; antioxidants; fetal programming; mTOR pathway; nutrigenomics

References

  1. Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. https://doi.org/10.1093/bioinformatics/btu638 - PubMed
  2. BAQCOM. (2019). Bioinformatics analysis for quality control and mapping. Retrieved from https://github.com/hanielcedraz/BAQCOM - PubMed
  3. Benjamini, Y., & Hochberg, Y. (1995). Controllin the false discovery rate: A practical and powerful approch to multiple testing. Journal of the Royal Statistic Society, 57, 289-300. - PubMed
  4. Berchieri-Ronchi, C. B., Kim, S. W., Zhao, Y., Correa, C. R., Yeum, K. J., & Ferreira, A. L. A. (2011). Oxidative stress status of highly prolific sows during gestation and lactation. Animal, 5, 1774-1779. https://doi.org/10.1017/S1751731111000772 - PubMed
  5. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170 - PubMed
  6. Burk, A., Douzery, E. J. P., & Springer, M. S. (2002). The secondary structure of mammalian mitochondrial 16S rRNA molecules: Refinements based on a comparative phylogenetic approach. Journal of Mammalian Evolution, 9(3), 225-252. https://doi.org/10.1023/A:1022649516930 - PubMed
  7. Bérard, J., & Bee, G. (2010). Effects of dietary L-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal, 4(10), 1680-1687. https://doi.org/10.1017/S1751731110000881 - PubMed
  8. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 9, 1-9. https://doi.org/10.1186/1471-2105-10-421 - PubMed
  9. Campbell, S. J., Henderson, C. J., Anthony, D. C., Davidson, D., Clark, A. J., & Wolf, C. R. (2005). The murine Cyp1a1 gene is expressed in a restricted spatial and temporal pattern during embryonic development. The American Society for Biochemistry and Molecular Biology, 280(7), 5828-5835. https://doi.org/10.1074/jbc.M412899200 - PubMed
  10. Carling, D. (2004). The AMP-activated protein kinase cascade-A unifying system for energy control. Trends in Biochemical Sciences, 29(1), 18-24. https://doi.org/10.1016/j.tibs.2003.11.005 - PubMed
  11. Chen, X., & Scholl, T. O. (2005). Oxidative stress: Changes in pregnancy and with gestational diabetes mellitus. Current Diabetes Reports, 5(4), 282-288. https://doi.org/10.1007/s11892-005-0024-1 - PubMed
  12. Chopra, I., Li, H. F., Wang, H., & Webster, K. A. (2012). Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia, 55(3), 783-794. https://doi.org/10.1007/s00125-011-2407-y - PubMed
  13. Conesa, A., Madrigal, P., Tarazona, S., Gomez-cabrero, D., Cervera, A., Mcpherson, A., … Zhang, X. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17, 1-19. https://doi.org/10.1186/s13059-016-0881-8 - PubMed
  14. Costa, K. A., Marques, D. B. D., de Campos, C. F., Saraiva, A., Guimarães, J. D., & Guimarães, S. E. F. (2019). Nutrition influence on sow reproductive performance and conceptuses development and survival: A review about L-arginine supplementation. Livestock Science, 228, 97-103. https://doi.org/10.1016/j.livsci.2019.08.010 - PubMed
  15. Costa, K. A., Saraiva, A., Guimaraes, J. D., Marques, D. B. D., Machado-neves, M., Reis, L. M. B., … Guimarães, S. E. F. (2019). Dietary L-arginine supplementation during early gestation of gilts affects conceptuses development. Theriogenology, 140, 62-71. https://doi.org/10.1016/j.theriogenology.2019.08.018 - PubMed
  16. Coughlan, K. A., Valentine, R. J., Ruderman, N. B., & Saha, A. K. (2014). AMPK activation: A therapeutic target for type 2 diabetes? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 7, 241-253. https://doi.org/10.2147/DMSO.S43731 - PubMed
  17. Cruzen, S. M., Paulino, P. V. R., Lonergan, S. M., & Huff-lonergan, E. (2014). Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Science, 96(2), 854-861. https://doi.org/10.1016/j.meatsci.2013.09.021 - PubMed
  18. Cruz-Reyes, J., & Gray, M. W. (2018). RNA metabolism in mitochondria. Philadelphia, PA: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-78190-7 - PubMed
  19. Cullinan, S. B., & Diehl, J. A. (2006). Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. International Journal of Biochemistry and Cell Biology, 38(3), 317-332. https://doi.org/10.1016/j.biocel.2005.09.018 - PubMed
  20. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J., & Diehl, J. A. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Molecular and Cellular Biology, 23, 7198-7209. - PubMed
  21. Dioguardi, F. S. (2011). To give or not to give? Lessons from the arginine paradox. Journal of Nutrigenetics and Nutrigenomics, 4(2), 90-98. https://doi.org/10.1159/000327777 - PubMed
  22. Dumollard, R., Carroll, J., Duchen, M. R., Campbell, K., & Swann, K. (2009). Mitochondrial function and redox state in mammalian embryos. Seminars in Cell and Developmental Biology, 20(3), 346-353. https://doi.org/10.1016/j.semcdb.2008.12.013 - PubMed
  23. Gao, K., Jiang, Z., Lin, Y., Zheng, C., Zhou, G., Chen, F., … Wu, G. (2012). Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids, 42(6), 2207-2214. https://doi.org/10.1007/s00726-011-0960-9 - PubMed
  24. Garcia-Roves, P. M., Osler, M. E., Holmström, M. H., & Zierath, J. R. (2008). Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. Journal of Biological Chemistry, 283(51), 35724-35734. https://doi.org/10.1074/jbc.M805078200 - PubMed
  25. GeneCards. (2019). GeneCards-Human gene database. Retrieved from https://www.genecards.org/cgi-bin/carddisp.pl?gene=mlst8 - PubMed
  26. Godfrey, K. M., & Barker, D. J. P. (2001). Fetal programming and adult health. Public Health Nutrition, 4, 611-624. https://doi.org/10.1079/PHN2001145 - PubMed
  27. González, I. M., Martin, P. M., Burdsal, C., Sloan, J. L., Mager, S., Harris, T., & Sutherland, A. E. (2012). Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Developmental Biology, 361(2), 286-300. https://doi.org/10.1016/j.ydbio.2011.10.021 - PubMed
  28. Grody, W. W., Argyle, C., Kem, R. M., Dizikes, G. J., Spector, E. B., Strickland, A. D., … Cederbaum, S. D. (1989). Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis. Journal of Clinical Investigation, 83(2), 602-609. https://doi.org/10.1172/JCI113923 - PubMed
  29. Guertin, D., & Sabatini, D. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9-22. https://doi.org/10.1016/j.ccr.2007.05.008 - PubMed
  30. Guo, Y. X., Nie, H. T., Xu, C. J., Zhang, G. M., Sun, L. W., Zhang, T. T., & Wang, F. (2018). Effects of nutrient restriction and arginine treatment on oxidative stress in the ovarian tissue of ewes during the luteal phase. Theriogenology, 113, 127-136. https://doi.org/10.1016/j.theriogenology.2018.02.016 - PubMed
  31. Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175-189. https://doi.org/10.1093/humupd/7.2.175 - PubMed
  32. Hara, K., Yonezawa, K., Weng, Q., Kozlowski, M. T., Belham, C., & Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. The Journal of Biological Chemistry, 273(23), 14484-14494. https://doi.org/10.1074/jbc.273.23.14484 - PubMed
  33. Hardie, D. (2007). AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology, 8(10), 774-785. https://doi.org/10.1038/nrm2249 - PubMed
  34. Hardie, D. G., Schaffer, B. E., & Brunet, A. (2016). AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends in Cell Biology, 26(3), 190-201. https://doi.org/10.1016/j.tcb.2015.10.013 - PubMed
  35. Hea, L., Hea, T., Farrarb, S., Jia, L., Liua, T., & Maa, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44, 532-553. https://doi.org/10.1159/000485089 - PubMed
  36. Hempstock, J., Jauniaux, E., Greenwold, N., & Burton, G. J. (2003). The contribution of placental oxidative stress to early pregnancy failure. Human Pathology, 34(12), 1265-1275. https://doi.org/10.1016/j.humpath.2003.08.006 - PubMed
  37. Howell, J. J., Hellberg, K., Turner, M., Talbott, G., Kolar, M. J., Ross, D. S., … Manning, B. D. (2017). Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metabolism, 20, 1-9. https://doi.org/10.1016/j.cmet.2016.12.009 - PubMed
  38. Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., … Lempicki, R. A. (2007). DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Research, 35(Suppl.2), 169-175. https://doi.org/10.1093/nar/gkm415 - PubMed
  39. Ishida, M., Hiramatsu, Y., Masuyama, H., Mizutani, Y., & Kudo, T. (2002). Inhibition of placental ornithine decarboxylase by DL-a-difluoro-methyl ornithine causes fetal growth restriction in rat. Life Sciences, 70, 1395-1405. https://doi.org/10.1016/S0024-3205(01)01510-7 - PubMed
  40. Jäger, S. S., Handschin, C. C., St-Pierre, J. J., & Spiegelman, B. M. B. M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12017-12022. https://doi.org/10.1073/pnas.0705070104 - PubMed
  41. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. https://doi.org/10.1038/nmeth.3317 - PubMed
  42. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., … Sabatini, D. M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2), 163-175. https://doi.org/10.1016/S0092-8674(02)00808-5 - PubMed
  43. Kim, D. H., Sarbassov, D. D., Ali, S. M., Latek, R. R., Guntur, K. V. P., Erdjument-bromage, H., … Sabatini, D. M. (2003). GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Molecular Cell, 11, 895-904. https://doi.org/10.1016/s1097-2765(03)00114-x - PubMed
  44. Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., … Wu, G. (2012). L-arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. The Journal of Nutritional Biochemistry, 23(9), 1178-1183. https://doi.org/10.1016/j.jnutbio.2011.06.012 - PubMed
  45. Kwon, E. J., & Kim, Y. J. (2017). What is fetal programming?: A lifetime health is under the control of in utero health. Obstetrics and Gynecology Science, 60(6), 506-519. https://doi.org/10.5468/ogs.2017.60.6.506 - PubMed
  46. Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. Journal of Cell Science, 122, 3589-3594. https://doi.org/10.1242/jcs.051011 - PubMed
  47. Laplante, M., & Sabatini, D. M. (2012). MTOR signaling in growth control and disease. Cell, 149(2), 274-293. https://doi.org/10.1016/j.cell.2012.03.017 - PubMed
  48. Lassala, A., Bazer, F. W., Cudd, T. A., Datta, S., Keisler, D. H., Satterfield, M. C., … Wu, G. (2010). Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. The Journal of Nutrition, 140, 1242-1248. https://doi.org/10.3945/jn.110.125658.retardation - PubMed
  49. Leite, R. F., Annes, K., Ispada, J., de Lima, C. B., Dos Santos, É. C., Fontes, P. K., … Milazzotto, M. P. (2018). Corrigendum to “oxidative stress alters the profile of transcription factors related to early development on in vitro produced embryos”. Oxidative Medicine and Cellular Longevity, 2018, 6730857. https://doi.org/10.1155/2018/6730857 - PubMed
  50. Li, J., Xia, H., Yao, W., Wang, T., Li, J., Piao, X., … Wang, F. (2015). Effects of arginine supplementation during early gestation (day 1 to 30) on litter size and plasma metabolites in gilts and sows 1. Journal of Animal Science, 93(11), 5291-5303. https://doi.org/10.2527/jas2014-8657 - PubMed
  51. Li, X., Bazer, F. W., Johnson, G. A., Burghardt, R. C., Frank, J. W., Dai, Z., … Wu, G. (2014). Dietary supplementation with l-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids, 46(2), 375-384. https://doi.org/10.1007/s00726-013-1626-6 - PubMed
  52. Liang, M., Wang, Z., Li, H., Cai, L., Pan, J., He, H., … Yang, L. (2018). L-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food and Chemical Toxicology, 115, 315-328. https://doi.org/10.1016/j.fct.2018.03.029 - PubMed
  53. Lin, C. S., Liu, C. Y., Wu, H. T., Sun, Y. L., Chang, L. C., Yen, N. T., … Mao, S. J. T. (1998). SSCP analysis in the D-loop region of porcine mitochondrial DNA as confirmed by sequence diversity. Journal of Animal Breeding and Genetics, 115(1), 73-78. https://doi.org/10.1111/j.1439-0388.1998.tb00329.x - PubMed
  54. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262 - PubMed
  55. Magnuson, B., Ekim, B., & Fingar, D. C. (2012). Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochemical Journal, 441(1), 1-21. https://doi.org/10.1042/BJ20110892 - PubMed
  56. Johnson, M. A., Vidoni, S., Durigon, R., Pearce, S. F., Rorbach, J., He, J., … Spinazzola, A. (2014). Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis. PLOS One, 9(4), e93597. https://doi.org/10.1371/journal.pone.0093597 - PubMed
  57. Mateo, R. D., Wu, G., Bazer, F. W., Park, J. C., Shinzato, I., & Kim, S. W. (2007). Dietary L-arginine supplementation enhances the reproductive performance of gilts. The Journal of Nutrition, 137(3), 652-656. https://doi.org/10.1093/jn/137.3.652 - PubMed
  58. McGee, S. L., & Hargreaves, M. (2010). AMPK-mediated regulation of transcription in skeletal muscle. Clinical Science, 118(8), 507-518. https://doi.org/10.1042/CS20090533 - PubMed
  59. Meininger, C., & Wu, G. (2002). Regulation of endothelial cell proliferation by nitric oxide. Methods in Enzymology, 352(1998), 280-295. https://doi.org/10.1016/S0076-6879(02)52026-7 - PubMed
  60. Mori, M., Gotoh, T., Nagasaki, A., Takiguchi, M., & Sonoki, T. (1998). Regulation of the urea cycle enzyme genes in nitric oxide synthesis. Journal of Inherited Metabolic Disease, 21(Suppl 1), 59-71. https://doi.org/10.1023/A:1005357608129 - PubMed
  61. Pause, A., Belsham, G. J., Gingras, A. C., Donzé, O., Lin, T. A., Lawrence, J. C., & Sonenberg, N. (1994). Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature, 371, 762-767. https://doi.org/10.1038/371762a0 - PubMed
  62. Prater, M. R., Laudermilch, C. L., Liang, C., & Holladay, S. D. (2008). Placental oxidative stress alters expression of murine osteogenic genes and impairs fetal skeletal formation. Placenta, 20, 79. https://doi.org/10.1016/j.placenta.2008.06.010 - PubMed
  63. Quesnel, H., Quiniou, N., Roy, H., Lottin, A., Boulot, S., & Gondret, F. (2014). Supplying dextrose before insemination and L-arginine during the last third of pregnancy in sow diets: Effects on within-litter variation of piglet birth weight. Journal of Animal Science, 92, 1445-1450. https://doi.org/10.2527/jas2013-6701 - PubMed
  64. R Core Team. (2018). A language and environment for statistical computing, Vienna: R Foundation for Statistical Computing. - PubMed
  65. Rhoads, J. M., Corl, B. A., Harrell, R., Niu, X., Gatlin, L., Phillips, O., … Odle, J. (2007). Intestinal ribosomal p70 S6K signaling is increased in piglet rotavirus enteritis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292(3), 913-922. https://doi.org/10.1152/ajpgi.00468.2006 - PubMed
  66. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007 - PubMed
  67. Rostagno, H. S., Albino, L. F. T., Donzele, J. L., Gomes, P. C., Oliveira, R. F., de Lopes, D. C., … Euclides, R. F. (2011). Brazilian tables for poultry and swine: Composition of feedstuffs and nutritional requirements. https://doi.org/10.4236/fns.2013.4111 - PubMed
  68. Sarbassov, D. D., Ali, S. M., Kim, D.-H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., … Sabatini, D. M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14(14), 1296-1302. https://doi.org/10.1016/j.cub.2004.06.054 - PubMed
  69. Sarbassov, D. D., Ali, S. M., & Sabatini, D. M. (2005). Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 17(6), 596-603. https://doi.org/10.1016/j.ceb.2005.09.009 - PubMed
  70. Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease robert. Cell, 168(6), 960-976. https://doi.org/10.1016/j.cell.2017.02.004.mTOR - PubMed
  71. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models. Genome Research, 13(22), 2498-2504. https://doi.org/10.1101/gr.1239303.metabolite - PubMed
  72. Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. PLOS One, 6(7), 21800. https://doi.org/10.1371/journal.pone.0021800 - PubMed
  73. Tavares, M. R., Pavan, I. C. B., Amaral, C. L., Meneguello, L., Luchessi, A. D., & Simabuco, F. M. (2015). The S6K protein family in health and disease. Life Sciences, 131, 1-10. https://doi.org/10.1016/j.lfs.2015.03.001 - PubMed
  74. Tayeboon, G. S., Osstad, S. N., Nasri, S., Nili-Ahmadabadi, A., Tavakoli, F., & Sabzevari, O. (2015). Effects of teratogenic drugs on CYP1A1 activity in differentiating rat embryo cells. Drug Research, 65, 238-243. https://doi.org/10.1055/s-0034-1370966 - PubMed
  75. Teixeira, S. A., Ibelli, A. M. G., Cantão, M. E., Oliveira, H. C., De, Ledur, M. C., … Guimarães, S. E. F. (2019). Sex determination using RNA-sequencing analyses in early prenatal pig development. Genes, 363, 11-97. https://doi.org/10.3390/genes10121010. - PubMed
  76. Ufer, C., Wang, C. C., Borchert, A., Heydeck, D., & Kuhn, H. (2010). Redox control in mammalian embryo development. Antioxidants and Redox Signaling, 13(6), 833-875. https://doi.org/10.1089/ars.2009.3044 - PubMed
  77. Um, S. H., D'Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393-402. https://doi.org/10.1016/j.cmet.2006.05.003 - PubMed
  78. Wang, D., Wan, X., Peng, J., Xiong, Q., Niu, H., Li, H., … Jiang, S. (2017). The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs. Biochemical and Biophysical Research Communications, 485(2), 319-327. https://doi.org/10.1016/j.bbrc.2017.02.084 - PubMed
  79. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57-63. https://doi.org/10.1038/nrg2484 - PubMed
  80. Weller, M. M. D. C. A., Alebrante, L., Campos, P. H. R. F., Saraiva, A., Silva, B. A. N., Donzele, J. L., … Guimarães, S. E. F. (2013). Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression. Animal, 7(12), 1985-1993. https://doi.org/10.1017/s1751731113001535 - PubMed
  81. Wiesner, R. J., Hornung, T. V., Garman, J. D., Clayton, D. A., Gorman, E. O., & Wallimann, T. (1999). Stimulation of mitochondrial gene expression and proliferation of mitochondria following impairment of cellular energy transfer by inhibition of the phosphocreatine circuit in rat hearts. Journal of Bioenergetics and Biomembranes, 31(6), 559-567. - PubMed
  82. Wu, G. (2014). Dietary requirements of synthesizable amino acids by animals: A paradigm shift in protein nutrition. Journal of Animal Science and Biotechnology, 5, 34. - PubMed
  83. Wu, G., Bazer, F. W., Cudd, T. A., Meininger, C. J., & Spencer, T. E. (2004). Maternal nutrition and fetal development. Recent Advances in Nutritional Sciences, 134(9), 2169-2172. https://doi.org/10.1093/jn/134.9.2169 - PubMed
  84. Wu, G., Bazer, F. W., Davis, T. A., Jaeger, L. A., Johnson, G. A., Kim, S. W., … Yin, Y. L. (2007). Important roles for the arginine family of amino acids in swine nutrition and production. Livestock Science, 112(1-2), 8-22. https://doi.org/10.1016/j.livsci.2007.07.003 - PubMed
  85. Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Marc Rhoads, J., … Yin, Y. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168. https://doi.org/10.1007/s00726-008-0210-y - PubMed
  86. Wu, G., Bazer, F. W., Satterfield, M. C., Li, X., Wang, X., Johnson, G. A., … Wu, Z. (2013). Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids, 45(2), 241-256. https://doi.org/10.1007/s00726-013-1515-z - PubMed
  87. Wu, G., & Morris, S. M. (1998). Arginine metabolism: Nitric oxide and beyond. The Biochemical Journal, 336, 1-17. - PubMed
  88. Xiao, X. M., & Li, L. P. (2005). L-Arginine treatment for asymmetric fetal growth restriction. International Journal of Gynecology and Obstetrics, 88, 15-18. https://doi.org/10.1016/j.ijgo.2004.09.017 - PubMed
  89. Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M. X., Huang, T., & Li, R. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, 4, 1-11. https://doi.org/10.1038/srep04089 - PubMed
  90. Yang, T., Zhao, Z., Liu, T., Zhang, Z., Wang, P., Xu, S., … Shan, A. (2017). Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine. Oncotarget, 8(8), 13428-13439. https://doi.org/10.18632/oncotarget.14550 - PubMed
  91. Zhang, S., Heng, J., Song, H., Zhang, Y., Lin, X., Tian, M., … Guan, W. (2019). Role of maternal dietary protein and amino acids on fetal programming, early neonatal development, and lactation in swine. Animals, 9(1), 19. https://doi.org/10.3390/ani9010019 - PubMed

Publication Types

Grant support