Display options
Share it on

Plant Soil. 2020;450(1):93-110. doi: 10.1007/s11104-019-04012-1. Epub 2019 Apr 01.

Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield.

Plant and soil

Leandro Van Langenhove, Thomas Depaepe, Sara Vicca, Joke van den Berge, Clement Stahl, Elodie Courtois, James Weedon, Ifigenia Urbina, Oriol Grau, Dolores Asensio, Josep Peñuelas, Pascal Boeckx, Andreas Richter, Dominique Van Der Straeten, Ivan A Janssens

Affiliations

  1. Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, Belgium.
  2. Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, KL Belgium.
  3. INRA, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de Guyane, 97387 Kourou, French Guiana.
  4. Laboratoire Ecologie, évolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, French Guiana, 97300 Cayenne, France.
  5. Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
  6. CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia Spain.
  7. CREAF, 08193 Cerdanyola del Vallès, Catalonia Spain.
  8. Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Isotope Bioscience Laboratory - ISOFYS, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
  9. Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, 1090 Vienna, Austria.

PMID: 32624623 PMCID: PMC7319290 DOI: 10.1007/s11104-019-04012-1

Abstract

BACKGROUND AND AIMS: Biological fixation of atmospheric nitrogen (N

METHODS: We used the acetylene reduction assay to measure FLNF rates at two sites, in two seasons and along three topographical positions, and used regression analyses to identify which edaphic explanatory variables, including carbon (C), nitrogen (N), phosphorus (P) and molybdenum (Mo) content, pH, water and available N and P, explained most of the variation in FLNF rates.

RESULTS: Overall, FLNF rates were lower than measured in tropical systems elsewhere. In soils seasonal variability was small and FLNF rates differed among topographies at only one site. Water, P and pH explained 24% of the variation. In leaf litter, FLNF rates differed seasonally, without site or topographical differences. Water, C, N and P explained 46% of the observed variation. We found no regulatory role of Mo at our sites.

CONCLUSIONS: Rates of FLNF were low in primary rainforest on poor soils on the Guiana shield. Water was the most important rate-regulating factor and FLNF increased with increasing P, but decreased with increasing N. Our results support the general assumption that N fixation in tropical lowland forests is limited by P availability.

© The Author(s) 2019.

Keywords: Free-living nitrogen fixation; French Guiana; Molybdenum; Nutrients; Phosphorus; Tropical forest

References

  1. Nat Rev Microbiol. 2004 Aug;2(8):621-31 - PubMed
  2. Dalton Trans. 2012 Jan 28;41(4):1118-27 - PubMed
  3. Oecologia. 1994 Sep;99(1-2):145-150 - PubMed
  4. Philos Trans R Soc Lond B Biol Sci. 2013 May 27;368(1621):20130119 - PubMed
  5. Nat Commun. 2013;4:2934 - PubMed
  6. Ecol Lett. 2012 Jan;15(1):9-16 - PubMed
  7. ISME J. 2008 May;2(5):561-70 - PubMed
  8. Ecology. 2008 Feb;89(2):371-9 - PubMed
  9. Nature. 2013 Oct 10;502(7470):224-7 - PubMed
  10. Nature. 2006 Mar 9;440(7081):165-73 - PubMed
  11. Front Microbiol. 2016 Jul 05;7:1045 - PubMed
  12. Oecologia. 2011 Feb;165(2):511-20 - PubMed
  13. FEMS Microbiol Rev. 1988 Apr-Jun;4(2):111-29 - PubMed
  14. Annu Rev Biochem. 2009;78:701-22 - PubMed
  15. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3718-25 - PubMed
  16. New Phytol. 2018 Feb;217(3):1050-1061 - PubMed
  17. Environ Sci Technol. 2016 Feb 2;50(3):1147-56 - PubMed
  18. J Bacteriol. 1987 Mar;169(3):944-8 - PubMed
  19. Science. 2004 Jul 23;305(5683):509-13 - PubMed
  20. Annu Rev Microbiol. 1980;34:183-207 - PubMed
  21. Microbiol Mol Biol Rev. 1999 Dec;63(4):968-89, table of contents - PubMed
  22. Oecologia. 2010 Oct;164(2):521-31 - PubMed
  23. Ann Bot. 2005 Oct;96(5):745-54 - PubMed
  24. Oecologia. 1989 Jun;79(4):471-474 - PubMed
  25. Microb Ecol. 2014 Aug;68(2):247-58 - PubMed
  26. Sci Rep. 2017 Mar 23;7:45017 - PubMed
  27. PLoS One. 2012;7(3):e33710 - PubMed
  28. Nat Microbiol. 2018 Mar;3(3):281-286 - PubMed
  29. Nature. 2006 Sep 28;443(7110):444-7 - PubMed
  30. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):10909-12 - PubMed
  31. Am Nat. 2009 Oct;174(4):465-77 - PubMed
  32. Biochemistry. 1993 Dec 14;32(49):13725-31 - PubMed
  33. Plant Physiol. 1968 Aug;43(8):1185-207 - PubMed
  34. Science. 2003 Nov 28;302(5650):1512-3 - PubMed
  35. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8101-6 - PubMed
  36. Crit Rev Biochem Mol Biol. 2003;38(4):351-84 - PubMed
  37. Curr Issues Mol Biol. 2000 Oct;2(4):125-31 - PubMed
  38. ISME J. 2010 Oct;4(10):1340-51 - PubMed

Publication Types