Display options
Share it on

J Adv Res. 2020 May 26;24:447-461. doi: 10.1016/j.jare.2020.05.019. eCollection 2020 Jul.

Differentially evolved drought stress indices determine the genetic variation of .

Journal of advanced research

Hira Khanzada, Ghulam Mustafa Wassan, Haohua He, Annaliese S Mason, Ayaz Ali Keerio, Saba Khanzada, Muhammad Faheem, Abdul Malik Solangi, Qinghong Zhou, Donghui Fu, Yingjin Huang, Adnan Rasheed

Affiliations

  1. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
  2. College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
  3. Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
  4. Department of Plant Breeding and Genetics, Faculty of Crop Production, Sindh Agriculture University Tando Jam, Sindh, Pakistan.
  5. College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.

PMID: 32577311 PMCID: PMC7300156 DOI: 10.1016/j.jare.2020.05.019

Abstract

Drought seriously curtails growth, physiology and productivity in rapeseed (

© 2020 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Keywords: Brassica napus; Candidate genes; Drought tolerance; Genome-wide association studies (GWAS); Specific length amplified fragments (SLAFs)

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Sci Rep. 2017 Jan 16;7:40532 - PubMed
  2. Front Chem. 2017 Dec 19;5:115 - PubMed
  3. Nat Genet. 2013 Jan;45(1):43-50 - PubMed
  4. Trends Plant Sci. 2010 Oct;15(10):573-81 - PubMed
  5. BMC Plant Biol. 2014 May 31;14:150 - PubMed
  6. J Exp Bot. 2014 Aug;65(15):4285-95 - PubMed
  7. Science. 2014 Aug 22;345(6199):950-3 - PubMed
  8. Genome Res. 2002 Apr;12(4):656-64 - PubMed
  9. New Phytol. 2016 Jun;210(4):1169-89 - PubMed
  10. Plant Physiol. 2013 Jul;162(3):1378-91 - PubMed
  11. DNA Res. 2017 Dec 11;25(3):229-244 - PubMed
  12. BMC Plant Biol. 2015 May 22;15:125 - PubMed
  13. PLoS Genet. 2017 Jul 7;13(7):e1006889 - PubMed
  14. Appl Environ Microbiol. 2013 Sep;79(17):5112-20 - PubMed
  15. Genet Mol Biol. 2018 Jul/Sept.;41(3):624-637 - PubMed
  16. Front Plant Sci. 2017 Apr 28;8:648 - PubMed
  17. Front Plant Sci. 2015 Nov 27;6:1058 - PubMed
  18. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  19. Theor Appl Genet. 2016 Jun;129(6):1203-15 - PubMed
  20. Theor Appl Genet. 2014 Jan;127(1):85-96 - PubMed
  21. Plant J. 1996 Aug;10(2):375-81 - PubMed
  22. Theor Appl Genet. 2013 Oct;126(10):2587-96 - PubMed
  23. Plant Cell Environ. 2016 Jun;39(6):1228-39 - PubMed
  24. Am J Hum Genet. 2002 Nov;71(5):1227-34 - PubMed
  25. Transgenic Res. 2013 Apr;22(2):327-41 - PubMed
  26. Bioinformatics. 2007 Oct 1;23(19):2633-5 - PubMed
  27. Front Plant Sci. 2014 Sep 30;5:485 - PubMed
  28. Bioinformatics. 2005 Jan 15;21(2):263-5 - PubMed
  29. Genet Mol Biol. 2016 Jul-Sep;39(3):398-407 - PubMed
  30. Plant J. 2013 Jul;75(1):26-39 - PubMed
  31. DNA Res. 2016 Feb;23(1):43-52 - PubMed
  32. J Exp Bot. 2015 Jan;66(1):245-56 - PubMed
  33. Genome Res. 2009 Sep;19(9):1655-64 - PubMed
  34. PLoS One. 2013;8(3):e58700 - PubMed
  35. Plant Physiol. 2014 Apr;164(4):1600-18 - PubMed
  36. Physiol Plant. 2013 Jan;147(1):15-27 - PubMed
  37. Nucleic Acids Res. 1980 Oct 10;8(19):4321-5 - PubMed
  38. J Exp Bot. 2013 May;64(8):2205-18 - PubMed
  39. Plant Cell Environ. 2016 Jan;39(1):88-102 - PubMed
  40. Nat Genet. 2011 Dec 04;44(1):32-9 - PubMed

Publication Types