Display options
Share it on

Front Oncol. 2020 Jun 18;10:893. doi: 10.3389/fonc.2020.00893. eCollection 2020.

Protein Kinase CK2 in Cancer Energetics.

Frontiers in oncology

Eduardo Silva-Pavez, Julio C Tapia

Affiliations

  1. Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.

PMID: 32626654 PMCID: PMC7315807 DOI: 10.3389/fonc.2020.00893

Abstract

Protein kinase CK2 (formerly known as casein kinase 2) is abnormally elevated in many cancers. This may increase tumor aggressiveness through CK2-dependent phosphorylation of key proteins in several signaling pathways. In this work, we have compiled evidence from the literature to suggest that CK2 also modulates a metabolic switch characteristic of cancer cells that enhances resistance to death, due to either drugs or to a microenvironment deficient in oxygen or nutrients. Concurrently, CK2 may help to preserve mitochondrial activity in a PTEN-dependent manner. PTEN, widely recognized as a tumor suppressor, is another CK2 substrate in the PI3K/Akt signaling pathway that promotes cancer viability and aerobic glycolysis. Given that CK2 can regulate Akt as well as two of its main effectors, namely mTORC1 and β-catenin, we comprehensively describe how CK2 may modulate cancer energetics by regulating expression of key targets and downstream processes, such as HIF-1 and autophagy, respectively. Thus, the specific inhibition of CK2 may lead to a catastrophic death of cancer cells, which could become a feasible therapeutic strategy to beat this devastating disease. In fact, ATP-competitive inhibitors, synthetic peptides and antisense oligonucleotides have been designed as CK2 inhibitors, some of them used in preclinical models of cancer, of which TBB and silmitasertib are widely known. We will finish by discussing a hypothetical scenario in which cancer cells are "addicted" to CK2; i.e., in which many proteins that regulate signaling pathways and metabolism-linked processes are highly dependent on this kinase.

Copyright © 2020 Silva-Pavez and Tapia.

Keywords: aerobic glycolysis; autophagy; casein kinase CK2; hypoxia; metabolic switch; mitochondrial function; warburg effect

References

  1. Methods Enzymol. 2009;452:181-97 - PubMed
  2. Lancet. 2003 Jul 19;362(9379):205-9 - PubMed
  3. Curr Med Chem. 2008;15(19):1870-86 - PubMed
  4. Prog Cell Cycle Res. 1997;3:77-97 - PubMed
  5. Nat Rev Cancer. 2003 Oct;3(10):721-32 - PubMed
  6. Cell Death Differ. 2005 Jun;12(6):668-77 - PubMed
  7. Sci Rep. 2019 Mar 29;9(1):5337 - PubMed
  8. Cell Mol Life Sci. 2009 Jun;66(11-12):1858-67 - PubMed
  9. Oncogene. 2013 Oct;32(40):4748-57 - PubMed
  10. Front Physiol. 2017 Jul 27;8:544 - PubMed
  11. Eur J Cancer. 2007 Mar;43(5):928-34 - PubMed
  12. Cancers (Basel). 2017 Aug 31;9(9): - PubMed
  13. Lung Cancer. 2017 May;107:14-21 - PubMed
  14. Cell Signal. 2012 Sep;24(9):1797-802 - PubMed
  15. Int J Cancer. 2008 Jan 15;122(2):333-41 - PubMed
  16. J Exp Clin Cancer Res. 2019 Jul 5;38(1):287 - PubMed
  17. Sci Transl Med. 2011 Aug 3;3(94):94ra70 - PubMed
  18. Biomed Rep. 2017 Feb;6(2):127-133 - PubMed
  19. Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15079-84 - PubMed
  20. Biomedicines. 2018 Mar 19;6(1): - PubMed
  21. Cell. 2011 Mar 4;144(5):646-74 - PubMed
  22. Oncotarget. 2011 Jul;2(7):551-6 - PubMed
  23. Cancer Lett. 2015 Jan 28;356(2 Pt B):751-61 - PubMed
  24. Dev Cell. 2009 Jul;17(1):9-26 - PubMed
  25. Biochim Biophys Acta Gen Subj. 2017 Dec;1861(12):3272-3281 - PubMed
  26. Cell Death Dis. 2019 Jan 25;10(2):73 - PubMed
  27. Mol Oncol. 2020 Feb;14(2):347-362 - PubMed
  28. Nat Rev Cancer. 2009 Aug;9(8):550-62 - PubMed
  29. J Cell Biochem. 2011 Nov;112(11):3167-75 - PubMed
  30. Mol Cell. 2011 Oct 21;44(2):279-89 - PubMed
  31. Pharmaceuticals (Basel). 2017 Jan 05;10(1): - PubMed
  32. J Cell Biochem. 2004 Apr 1;91(5):865-79 - PubMed
  33. Eur J Cancer. 2011 Mar;47(5):792-801 - PubMed
  34. J Cell Biochem. 2009 Sep 1;108(1):52-63 - PubMed
  35. Carcinogenesis. 2002 Jan;23(1):201-5 - PubMed
  36. PLoS One. 2011 Feb 17;6(2):e17193 - PubMed
  37. Cell Cycle. 2009 May 1;8(9):1352-8 - PubMed
  38. Mol Cells. 2014 Aug;37(8):620-7 - PubMed
  39. Int J Oncol. 2012 Dec;41(6):1967-76 - PubMed
  40. Clin Cancer Res. 2009 Dec 1;15(23):7207-16 - PubMed
  41. Mol Cell. 2019 Jun 6;74(5):877-890.e6 - PubMed
  42. Biochimie. 2016 Feb;121:131-9 - PubMed
  43. J Exp Clin Cancer Res. 2018 May 15;37(1):104 - PubMed
  44. Biochim Biophys Acta. 2015 Nov;1847(11):1373-9 - PubMed
  45. Mol Cell Biochem. 2012 Jun;365(1-2):37-45 - PubMed
  46. Leukemia. 2018 Jan;32(1):1-10 - PubMed
  47. Nature. 2011 Dec 1;480(7375):118-22 - PubMed
  48. Cancer Cell. 2007 Jul;12(1):9-22 - PubMed
  49. EMBO J. 2014 Jul 1;33(13):1454-73 - PubMed
  50. J Cell Biochem. 2014 Dec;115(12):2103-15 - PubMed
  51. J Biol Chem. 2003 Jun 27;278(26):24018-25 - PubMed
  52. Exp Mol Med. 2017 Sep 8;49(9):e375 - PubMed
  53. Mol Cell Biol. 2015 Jan;35(1):2-10 - PubMed
  54. Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):7-15 - PubMed
  55. Sci Signal. 2015 Aug 11;8(389):ra80 - PubMed
  56. Acta Pharm Sin B. 2015 Sep;5(5):378-89 - PubMed
  57. Biochim Biophys Acta. 2010 Mar;1804(3):499-504 - PubMed
  58. Cancer Res. 2006 Jul 1;66(13):6683-91 - PubMed
  59. Cell. 2017 Mar 9;168(6):960-976 - PubMed
  60. Cancers (Basel). 2019 Jun 28;11(7): - PubMed
  61. Oncogene. 2019 Jun;38(26):5211-5226 - PubMed
  62. Cell. 2002 Mar 22;108(6):837-47 - PubMed
  63. J Cell Sci. 2006 Aug 15;119(Pt 16):3351-62 - PubMed
  64. J Biol Chem. 2001 Jan 12;276(2):993-8 - PubMed
  65. Mol Carcinog. 2016 Feb;55(2):220-9 - PubMed
  66. Nat Cell Biol. 2007 Feb;9(2):210-7 - PubMed
  67. Ann Surg Oncol. 2010 Jun;17(6):1695-702 - PubMed
  68. Oncotarget. 2016 Dec 27;7(52):87361-87372 - PubMed
  69. PLoS One. 2014 Dec 08;9(12):e114000 - PubMed
  70. Curr Med Chem. 2013;20(5):671-93 - PubMed
  71. FASEB J. 1995 Mar;9(5):313-23 - PubMed
  72. Pharmaceuticals (Basel). 2017 Jan 20;10(1): - PubMed
  73. Cell Metab. 2013 Nov 5;18(5):698-711 - PubMed
  74. PLoS One. 2013 Oct 03;8(10):e76247 - PubMed
  75. PLoS One. 2014 Apr 17;9(4):e94978 - PubMed
  76. Cell Res. 2010 Feb;20(2):174-84 - PubMed
  77. Curr Mol Med. 2016;16(6):533-44 - PubMed
  78. PLoS One. 2011 Apr 29;6(4):e19163 - PubMed
  79. Mol Cell Biochem. 2005 Jun;274(1-2):63-7 - PubMed
  80. EMBO J. 2002 May 15;21(10):2303-11 - PubMed
  81. Semin Oncol. 2018 Jan;45(1-2):58-67 - PubMed
  82. Oncotarget. 2017 Jan 3;8(1):1613-1627 - PubMed
  83. Acta Pharmacol Sin. 2017 Dec;38(12):1691-1698 - PubMed
  84. J Biol Chem. 2001 Dec 28;276(52):48627-30 - PubMed
  85. Mucosal Immunol. 2013 Jan;6(1):136-45 - PubMed
  86. Diabetes Metab Syndr. 2015 Jan-Mar;9(1):46-50 - PubMed
  87. J Cell Biochem. 2018 Nov;119(10):8501-8510 - PubMed
  88. Cancer Res. 2003 Feb 1;63(3):728-34 - PubMed
  89. Cancer Lett. 2012 Sep 1;322(1):113-8 - PubMed
  90. Biochem J. 2003 Jan 1;369(Pt 1):1-15 - PubMed
  91. J Cell Physiol. 2011 Jul;226(7):1953-9 - PubMed
  92. Trends Immunol. 2018 Feb;39(2):82-85 - PubMed
  93. Oncotarget. 2015 Oct 27;6(33):34800-17 - PubMed
  94. Cell Signal. 2014 Jul;26(7):1567-75 - PubMed
  95. Nat Rev Cancer. 2020 Feb;20(2):74-88 - PubMed
  96. Int J Mol Sci. 2019 Sep 07;20(18): - PubMed
  97. Nucleic Acids Res. 2013 Sep;41(16):7683-99 - PubMed
  98. Int J Clin Exp Pathol. 2014 Jun 15;7(7):4008-15 - PubMed
  99. Cell Metab. 2014 May 6;19(5):836-48 - PubMed
  100. J Surg Res. 2013 Oct;184(2):755-60 - PubMed
  101. Biochim Biophys Acta. 2013 Mar;1833(3):439-51 - PubMed
  102. Mol Cell. 2017 Sep 21;67(6):922-935.e5 - PubMed
  103. Annu Rev Cancer Biol. 2017 Mar;1:19-39 - PubMed
  104. Nat Commun. 2016 Apr 04;7:11127 - PubMed
  105. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15688-93 - PubMed
  106. PLoS One. 2014 Dec 26;9(12):e115609 - PubMed
  107. Front Cell Dev Biol. 2019 Jan 29;7:4 - PubMed
  108. Int J Cancer. 2005 Dec 10;117(5):764-74 - PubMed
  109. J Biol Chem. 2007 Apr 13;282(15):11221-9 - PubMed
  110. Int J Biochem Cell Biol. 2010 Oct;42(10):1729-35 - PubMed

Publication Types