Display options
Share it on

bioRxiv. 2020 Jun 23; doi: 10.1101/2020.06.22.166033.

Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes.

bioRxiv : the preprint server for biology

Tongqing Zhou, I-Ting Teng, Adam S Olia, Gabriele Cerutti, Jason Gorman, Alexandra Nazzari, Wei Shi, Yaroslav Tsybovsky, Lingshu Wang, Shuishu Wang, Baoshan Zhang, Yi Zhang, Phinikoula S Katsamba, Yuliya Petrova, Bailey B Banach, Ahmed S Fahad, Lihong Liu, Sheila N Lopez Acevedo, Bharat Madan, Matheus Oliveira de Souza, Xiaoli Pan, Pengfei Wang, Jacy R Wolfe, Michael Yin, David D Ho, Emily Phung, Anthony DiPiazza, Lauren Chang, Olubukula Abiona, Kizzmekia S Corbett, Brandon J DeKosky, Barney S Graham, John R Mascola, John Misasi, Tracy Ruckwardt, Nancy J Sullivan, Lawrence Shapiro, Peter D Kwong

Affiliations

  1. Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
  2. These authors contributed equally.
  3. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
  4. Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA.
  5. Bioengineering Graduate Program, The University of Kansas, Lawrence, KS 66045, USA.
  6. Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
  7. Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
  8. Department of Chemical Engineering, The University of Kansas, Lawrence, KS 66045, USA.
  9. Lead Contact: Peter D. Kwong ([email protected]).

PMID: 32596696 PMCID: PMC7315997 DOI: 10.1101/2020.06.22.166033

Abstract

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from ~0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes.

References

  1. Nat Methods. 2017 Mar;14(3):290-296 - PubMed
  2. Nat Rev Microbiol. 2004 Sep;2(9):695-703 - PubMed
  3. Cell. 2020 Apr 16;181(2):281-292.e6 - PubMed
  4. Int J Biol Sci. 2020 Mar 15;16(10):1718-1723 - PubMed
  5. Nature. 2020 Mar;579(7800):482-483 - PubMed
  6. Science. 2020 Jun 12;368(6496):1274-1278 - PubMed
  7. Acta Biomed. 2020 Mar 19;91(1):157-160 - PubMed
  8. Science. 2020 Mar 27;367(6485):1444-1448 - PubMed
  9. Protein Eng. 1996 Jul;9(7):617-21 - PubMed
  10. Emerg Microbes Infect. 2020 Dec;9(1):382-385 - PubMed
  11. Science. 2020 Mar 13;367(6483):1260-1263 - PubMed
  12. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7348-E7357 - PubMed
  13. Curr Opin HIV AIDS. 2015 May;10(3):129-34 - PubMed
  14. J Virol. 2018 Apr 27;92(10): - PubMed
  15. BMC Biotechnol. 2013 Jun 26;13:52 - PubMed
  16. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W615-9 - PubMed
  17. J Virol. 2014 Apr;88(8):4047-57 - PubMed
  18. Nat Med. 2020 Sep;26(9):1422-1427 - PubMed
  19. Rev Med Virol. 2020 May;30(3):e2106 - PubMed
  20. Cell. 2020 Jul 9;182(1):73-84.e16 - PubMed
  21. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  22. Nucleic Acids Res. 2000 Jan 1;28(1):214-8 - PubMed
  23. Nat Commun. 2020 May 4;11(1):2251 - PubMed
  24. Euro Surveill. 2020 Apr;25(16): - PubMed
  25. Lancet. 2019 Mar 2;393(10174):889-898 - PubMed
  26. Nat Rev Immunol. 2018 May;18(5):297-308 - PubMed
  27. Science. 2011 Sep 16;333(6049):1593-602 - PubMed
  28. Trends Immunol. 2020 May;41(5):355-359 - PubMed
  29. Nat Methods. 2015 Oct;12(10):943-6 - PubMed
  30. Cell. 2020 May 28;181(5):1004-1015.e15 - PubMed
  31. J Mol Biol. 1994 Sep 30;242(4):470-86 - PubMed
  32. Science. 2020 May 8;368(6491):630-633 - PubMed
  33. Nat Med. 2015 Jan;21(1):86-91 - PubMed
  34. Nat Biotechnol. 2018 Feb;36(2):152-155 - PubMed
  35. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W288-93 - PubMed
  36. Nature. 2020 Aug;584(7819):115-119 - PubMed
  37. Cell. 2016 Jul 28;166(3):609-623 - PubMed
  38. Mol Biotechnol. 2017 Oct;59(9-10):407-424 - PubMed
  39. J Biosci Bioeng. 2019 Aug;128(2):226-233 - PubMed
  40. Science. 2020 Aug 21;369(6506):956-963 - PubMed
  41. Emerg Microbes Infect. 2020 Dec;9(1):833-836 - PubMed
  42. Cell Mol Immunol. 2020 Jun;17(6):647-649 - PubMed
  43. Nature. 2020 Apr;580(7805):576-577 - PubMed
  44. Nat Rev Microbiol. 2013 Dec;11(12):836-48 - PubMed
  45. J Struct Biol. 2005 Oct;152(1):36-51 - PubMed
  46. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 - PubMed
  47. Nat Commun. 2020 Mar 27;11(1):1620 - PubMed
  48. Nat Biotechnol. 2013 Feb;31(2):166-9 - PubMed
  49. J Struct Biol. 2005 Jul;151(1):41-60 - PubMed
  50. Clin Infect Dis. 2020 Nov 19;71(16):2066-2072 - PubMed
  51. Cell. 2020 Apr 16;181(2):271-280.e8 - PubMed
  52. Science. 2016 Mar 18;351(6279):1339-42 - PubMed
  53. Protein Eng. 1998 Apr;11(4):329-32 - PubMed
  54. Science. 2016 Mar 18;351(6279):1343-6 - PubMed
  55. Nature. 2020 May;581(7807):215-220 - PubMed
  56. Nat Protoc. 2016 Mar;11(3):429-42 - PubMed
  57. J Biol Chem. 1990 Jun 5;265(16):9062-5 - PubMed
  58. Scand J Infect Dis. 2011 Jul;43(6-7):515-21 - PubMed
  59. J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):53-5 - PubMed
  60. Science. 2010 Aug 13;329(5993):856-61 - PubMed
  61. Cell. 2020 May 14;181(4):894-904.e9 - PubMed
  62. J Chem Theory Comput. 2014 Oct 14;10(10):4745-58 - PubMed
  63. J Struct Biol. 2012 Dec;180(3):519-30 - PubMed

Publication Types

Grant support