Display options
Share it on

Front Genet. 2020 Jun 03;11:445. doi: 10.3389/fgene.2020.00445. eCollection 2020.

HARMONIES: A Hybrid Approach for Microbiome Networks Inference via Exploiting Sparsity.

Frontiers in genetics

Shuang Jiang, Guanghua Xiao, Andrew Y Koh, Yingfei Chen, Bo Yao, Qiwei Li, Xiaowei Zhan

Affiliations

  1. Department of Statistical Science, Southern Methodist University, Dallas, TX, United States.
  2. Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States.
  3. Departments of Pediatrics, Departments of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
  4. Lyda Hill Department of Bioinformatics, Bioinformatics High Performance Computing, University of Texas Southwestern Medical Center, Dallas, TX, United States.
  5. Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX, United States.

PMID: 32582274 PMCID: PMC7283552 DOI: 10.3389/fgene.2020.00445

Abstract

The human microbiome is a collection of microorganisms. They form complex communities and collectively affect host health. Recently, the advances in next-generation sequencing technology enable the high-throughput profiling of the human microbiome. This calls for a statistical model to construct microbial networks from the microbiome sequencing count data. As microbiome count data are high-dimensional and suffer from uneven sampling depth, over-dispersion, and zero-inflation, these characteristics can bias the network estimation and require specialized analytical tools. Here we propose a general framework, HARMONIES, Hybrid Approach foR MicrobiOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome network. HARMONIES first utilizes a zero-inflated negative binomial (ZINB) distribution to model the skewness and excess zeros in the microbiome data, as well as incorporates a stochastic process prior for sample-wise normalization. This approach infers a sparse and stable network by imposing non-trivial regularizations based on the Gaussian graphical model. In comprehensive simulation studies, HARMONIES outperformed four other commonly used methods. When using published microbiome data from a colorectal cancer study, it discovered a novel community with disease-enriched bacteria. In summary, HARMONIES is a novel and useful statistical framework for microbiome network inference, and it is available at https://github.com/shuangj00/HARMONIES.

Copyright © 2020 Jiang, Xiao, Koh, Chen, Yao, Li and Zhan.

Keywords: Bayesian statistics; Dirichlet process prior; Gaussian graphical model; hierarchical model; microbiome network

References

  1. Nat Rev Genet. 2010 Jan;11(1):31-46 - PubMed
  2. PLoS One. 2011;6(5):e20447 - PubMed
  3. BMC Bioinformatics. 2017 Feb 8;18(1):94 - PubMed
  4. BMC Bioinformatics. 2014;15 Suppl 7:S5 - PubMed
  5. Nat Commun. 2015 Mar 11;6:6528 - PubMed
  6. BMC Infect Dis. 2014 Apr 12;14:198 - PubMed
  7. Nat Methods. 2017 Oct 31;14(11):1023-1024 - PubMed
  8. PLoS Comput Biol. 2017 Dec 27;13(12):e1005915 - PubMed
  9. NPJ Biofilms Microbiomes. 2017 Nov 29;3:34 - PubMed
  10. Nature. 2014 Sep 4;513(7516):59-64 - PubMed
  11. BMC Bioinformatics. 2010 Feb 18;11:94 - PubMed
  12. Br J Cancer. 2016 Jul 26;115(3):273-80 - PubMed
  13. Microbiome. 2018 Apr 11;6(1):70 - PubMed
  14. Gut. 2016 Dec;65(12):1973-1980 - PubMed
  15. Sci Rep. 2018 Jul 9;8(1):10329 - PubMed
  16. F1000Res. 2016 Jun 27;5:1519 - PubMed
  17. Biostatistics. 2008 Jul;9(3):432-41 - PubMed
  18. Microbiome. 2018 Jan 15;6(1):12 - PubMed
  19. Gut. 2017 Jan;66(1):70-78 - PubMed
  20. PLoS Comput Biol. 2015 May 07;11(5):e1004226 - PubMed
  21. Ann Stat. 2009;37(6B):4254-4278 - PubMed
  22. Genome Biol. 2010;11(3):R25 - PubMed
  23. Gut. 2017 Apr;66(4):683-691 - PubMed
  24. PLoS One. 2011;6(6):e20456 - PubMed
  25. Front Microbiol. 2015 Feb 02;6:20 - PubMed
  26. Genome Biol. 2010;11(10):R106 - PubMed
  27. Biometrics. 2019 Mar;75(1):183-192 - PubMed
  28. BMJ Open Gastroenterol. 2017 Jul 3;4(1):e000145 - PubMed
  29. Int J Mol Sci. 2019 Aug 25;20(17): - PubMed
  30. mSphere. 2016 May 11;1(3): - PubMed
  31. Nat Methods. 2013 Dec;10(12):1200-2 - PubMed
  32. Nat Rev Microbiol. 2014 Oct;12(10):661-72 - PubMed
  33. Front Microbiol. 2018 Mar 26;9:522 - PubMed
  34. Bioinformatics. 2015 Oct 15;31(20):3322-9 - PubMed
  35. Nat Microbiol. 2019 Dec;4(12):2319-2330 - PubMed
  36. Cell Host Microbe. 2013 Aug 14;14(2):207-15 - PubMed
  37. Gut Pathog. 2014 Jun 25;6:26 - PubMed
  38. PLoS One. 2010 Dec 20;5(12):e14147 - PubMed
  39. Biostatistics. 2004 Apr;5(2):155-76 - PubMed
  40. PLoS Pathog. 2017 Jul 13;13(7):e1006440 - PubMed
  41. Adv Neural Inf Process Syst. 2010 Dec 31;24(2):1432-1440 - PubMed
  42. Nat Med. 2019 Feb;25(2):323-336 - PubMed
  43. Bioinform Biol Insights. 2019 Apr 08;13:1177932219839402 - PubMed
  44. Cell Host Microbe. 2014 Mar 12;15(3):317-28 - PubMed
  45. Sci Rep. 2017 Sep 14;7(1):11590 - PubMed
  46. Cell Host Microbe. 2015 Feb 11;17(2):260-73 - PubMed
  47. ISME J. 2016 Jul;10(7):1669-81 - PubMed
  48. Mol Syst Biol. 2014 Nov 28;10:766 - PubMed
  49. J Am Stat Assoc. 2009 Jun 1;104(486):735-746 - PubMed
  50. Bioinformatics. 2015 Oct 1;31(19):3172-80 - PubMed
  51. Cell Host Microbe. 2014 Mar 12;15(3):382-392 - PubMed

Publication Types

Grant support