Display options
Share it on

Front Cell Dev Biol. 2020 Jun 09;8:387. doi: 10.3389/fcell.2020.00387. eCollection 2020.

Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy.

Frontiers in cell and developmental biology

Heiner Kremer, Julian Gebauer, Susanne Elvers-Hornung, Stefanie Uhlig, Hans-Peter Hammes, Elena Beltramo, Lothar Steeb, Martin C Harmsen, Carsten Sticht, Harald Klueter, Karen Bieback, Agnese Fiori

Affiliations

  1. Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  2. German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.
  3. FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  4. 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  5. Department of Medical Sciences, University of Turin, Turin, Italy.
  6. PeloBiotech GmbH, Martinsried, Germany.
  7. Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
  8. Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  9. Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  10. HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany.

PMID: 32582693 PMCID: PMC7295949 DOI: 10.3389/fcell.2020.00387

Abstract

Diabetic retinopathy (DR) is a frequent diabetes-associated complication. Pericyte dropout can cause increased vascular permeability and contribute to vascular occlusion. Adipose-derived stromal cells (ASC) have been suggested to replace pericytes and restore microvascular support as potential therapy of DR. In models of DR, ASC not only generated a cytoprotective and reparative environment by the secretion of trophic factors but also engrafted and integrated into the retina in a pericyte-like fashion. The aim of this study was to compare the pro-angiogenic features of human ASC and human retinal microvascular pericytes (HRMVPC)

Copyright © 2020 Kremer, Gebauer, Elvers-Hornung, Uhlig, Hammes, Beltramo, Steeb, Harmsen, Sticht, Klueter, Bieback and Fiori.

Keywords: angiogenesis; angiopoietin; diabetic retinopathy; human adipose-derived stromal cells; human retinal pericytes; vascular–endothelial growth factor

References

  1. Stem Cells. 2017 Jun;35(6):1542-1553 - PubMed
  2. Diabetologia. 2018 Jan;61(1):29-38 - PubMed
  3. BMC Bioinformatics. 2016 Jan 20;17:45 - PubMed
  4. PLoS One. 2014 Jan 09;9(1):e84671 - PubMed
  5. Cytotherapy. 2013 Jun;15(6):641-8 - PubMed
  6. Stem Cell Res Ther. 2014 Jun 18;5(3):79 - PubMed
  7. N Engl J Med. 2017 Mar 16;376(11):1047-1053 - PubMed
  8. Cytotherapy. 2013 Jun;15(6):726-39 - PubMed
  9. Int J Exp Pathol. 2013 Dec;94(6):412-7 - PubMed
  10. Graefes Arch Clin Exp Ophthalmol. 2010 Oct;248(10):1415-22 - PubMed
  11. Stem Cells. 2006 May;24(5):1294-301 - PubMed
  12. J Transl Med. 2014 Dec 10;12:337 - PubMed
  13. Prog Retin Eye Res. 2016 Mar;51:156-86 - PubMed
  14. Front Pharmacol. 2017 Mar 14;8:111 - PubMed
  15. FASEB J. 2019 Dec;33(12):14668-14679 - PubMed
  16. Stem Cells Dev. 2013 Mar 1;22(5):791-803 - PubMed
  17. Nucleic Acids Res. 2005 Nov 10;33(20):e175 - PubMed
  18. Prog Retin Eye Res. 2011 May;30(3):149-66 - PubMed
  19. Tissue Eng Part A. 2010 Sep;16(9):2953-66 - PubMed
  20. Curr Med Chem. 2013;20(26):3218-25 - PubMed
  21. Diabetes Metab Res Rev. 2009 Oct;25(7):647-56 - PubMed
  22. Stem Cells Dev. 2016 Oct 1;25(19):1444-53 - PubMed
  23. Stem Cell Res Ther. 2016 Mar 16;7:42 - PubMed
  24. Acta Diabetol. 2014 Dec;51(6):1055-64 - PubMed
  25. Nat Rev Genet. 2012 Mar 13;13(4):227-32 - PubMed
  26. Cytotherapy. 2006;8(4):315-7 - PubMed
  27. Nat Commun. 2017 Jul 18;8:16106 - PubMed
  28. Pflugers Arch. 2013 Jun;465(6):789-96 - PubMed
  29. Cell Stem Cell. 2008 Sep 11;3(3):301-13 - PubMed
  30. Wound Repair Regen. 2013 Jul-Aug;21(4):545-53 - PubMed
  31. Blood. 2009 Dec 3;114(24):5091-101 - PubMed
  32. Stem Cells Transl Med. 2015 May;4(5):459-67 - PubMed
  33. J Cell Biol. 1987 Sep;105(3):1455-62 - PubMed
  34. Stem Cells Dev. 2016 Dec 15;25(24):1843-1852 - PubMed
  35. Stem Cells. 2017 May;35(5):1273-1289 - PubMed
  36. Stem Cells Dev. 2013 Sep 1;22(17):2347-55 - PubMed
  37. Immunobiology. 2018 Dec;223(12):729-743 - PubMed
  38. Biochim Biophys Acta Mol Cell Res. 2018 Jan;1865(1):57-66 - PubMed
  39. Acta Biomater. 2020 May 17;: - PubMed
  40. Neuro Oncol. 2005 Oct;7(4):452-64 - PubMed
  41. Stem Cells. 2008 Apr;26(4):1047-55 - PubMed
  42. Cytotherapy. 2012 Sep;14(8):994-1004 - PubMed
  43. PLoS One. 2013 May 31;8(5):e65691 - PubMed
  44. Nat Commun. 2017 Nov 17;8(1):1574 - PubMed
  45. Arterioscler Thromb Vasc Biol. 2013 Dec;33(12):2818-29 - PubMed
  46. Cytotherapy. 2012 May;14(5):570-83 - PubMed
  47. Biotechnol Bioeng. 2010 Dec 15;107(6):1020-8 - PubMed
  48. Blood. 2012 Aug 16;120(7):1516-27 - PubMed
  49. Stem Cells. 2018 Feb;36(2):240-251 - PubMed
  50. Exp Cell Res. 2013 Nov 15;319(19):2964-76 - PubMed
  51. Database (Oxford). 2016 Jul 03;2016: - PubMed
  52. Stem Cells Dev. 2015 Dec 1;24(23):2822-40 - PubMed
  53. Circ Res. 2014 Oct 10;115(9):800-9 - PubMed
  54. Cytotherapy. 2020 May;22(5):261-275 - PubMed
  55. Stem Cells Dev. 2016 Aug 22;25(20):1549-1558 - PubMed
  56. Diabetologia. 2018 Nov;61(11):2371-2385 - PubMed
  57. Genom Data. 2015 Nov 10;7:20-5 - PubMed
  58. J Cell Sci. 2006 Jun 1;119(Pt 11):2204-13 - PubMed
  59. Cell Mol Life Sci. 2018 Feb;75(3):547-561 - PubMed
  60. Cell Stem Cell. 2017 Mar 2;20(3):345-359.e5 - PubMed

Publication Types