Display options
Share it on

Sci Adv. 2020 Jun 26;6(26):eabc0251. doi: 10.1126/sciadv.abc0251. eCollection 2020 Jun.

Soft electromagnetic actuators.

Science advances

Guoyong Mao, Michael Drack, Mahya Karami-Mosammam, Daniela Wirthl, Thomas Stockinger, Reinhard Schwödiauer, Martin Kaltenbrunner

Affiliations

  1. Division of Soft Matter Physics, Institute for Experimental Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
  2. Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.

PMID: 32637626 PMCID: PMC7319732 DOI: 10.1126/sciadv.abc0251

Abstract

Rigid electromagnetic actuators serve our society in a myriad of ways for more than 200 years. However, their bulky nature restricts close collaboration with humans. Here, we introduce soft electromagnetic actuators (SEMAs) by replacing solid metal coils with liquid-metal channels embedded in elastomeric shells. We demonstrate human-friendly, simple, stretchable, fast, durable, and programmable centimeter-scale SEMAs that drive a soft shark, interact with everyday objects, or rapidly mix a dye with water. A multicoil flower SEMA with individually controlled petals blooms or closes within tens of milliseconds, and a cubic SEMA performs programmed, arbitrary motion sequences. We develop a numerical model supporting design and opening potential routes toward miniaturization, reduction of power consumption, and increase in mechanical efficiency. SEMAs are electrically controlled shape-morphing systems that are potentially empowering future applications from soft grippers to minimally invasive medicine.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

References

  1. Science. 2019 Jul 12;365(6449):150-155 - PubMed
  2. Science. 2000 Feb 4;287(5454):836-9 - PubMed
  3. Nature. 1977 Jan 13;265(5590):114-7 - PubMed
  4. Nature. 2018 Feb 1;554(7690):81-85 - PubMed
  5. Science. 2010 Dec 24;330(6012):1759-61 - PubMed
  6. Science. 2018 Jan 5;359(6371):61-65 - PubMed
  7. Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1890-5 - PubMed
  8. Small. 2020 Mar;16(9):e1903841 - PubMed
  9. Nature. 2003 Sep 11;425(6954):145 - PubMed
  10. Med Phys. 2019 Dec;46(12):5488-5498 - PubMed
  11. Soft Matter. 2017 Jan 4;13(2):345-354 - PubMed
  12. Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4258-4273 - PubMed
  13. Nat Mater. 2016 Oct;15(10):1084-9 - PubMed
  14. Adv Mater. 2013 Aug 27;25(32):4466-9 - PubMed
  15. Science. 2012 Aug 17;337(6096):828-32 - PubMed
  16. Minim Invasive Ther Allied Technol. 2007;16(4):241-8 - PubMed
  17. Soft Robot. 2019 Feb;6(1):133-141 - PubMed
  18. Sci Rep. 2015 Jul 16;5:11695 - PubMed
  19. ACS Appl Mater Interfaces. 2019 Aug 21;11(33):30019-30027 - PubMed
  20. Nature. 2009 Apr 30;458(7242):1121-2 - PubMed
  21. Nat Commun. 2019 Jul 2;10(1):2703 - PubMed
  22. Nature. 2018 Jun;558(7709):274-279 - PubMed
  23. Adv Mater. 2017 Jul;29(27): - PubMed

Publication Types