Display options
Share it on

Nanomaterials (Basel). 2020 Jun 29;10(7). doi: 10.3390/nano10071270.

Application of Nanopharmaceutics for Flibanserin Brain Delivery Augmentation Via the Nasal Route.

Nanomaterials (Basel, Switzerland)

Osama A A Ahmed, Usama A Fahmy, Shaimaa M Badr-Eldin, Hibah M Aldawsari, Zuhier A Awan, Hani Z Asfour, Ahmed K Kammoun, Giuseppe Caruso, Filippo Caraci, Anas Alfarsi, Raniyah A Al-Ghamdi, Rawan A Al-Ghamdi, Nabil A Alhakamy

Affiliations

  1. Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  2. Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  3. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
  4. Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  5. Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University. Jeddah 21589, Saudi Arabia.
  6. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  7. Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, 94018 Troina (EN), Italy.
  8. Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
  9. Ibn Sina National College for Medical Studies, Clinical Pharmacy Department, Jeddah 22421, Saudi Arabia.
  10. Ibn Sina National College for Medical Studies, Jeddah 22421, Saudi Arabia.
  11. Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

PMID: 32610539 PMCID: PMC7408465 DOI: 10.3390/nano10071270

Abstract

Flibanserin (FLB) is a nonhormonal medicine approved by the Food and Drug Administration (FDA) to treat the hypoactive sexual appetite disorder in females. However, the peroral administration of the medicine is greatly affected by its poor bioavailability as a result of its extensive first-pass effect and poor solubility. Aiming at circumventing these drawbacks, this work involves the formulation of optimized FLB transfersome (TRF) loaded intranasal hydrogel. Box-Behnken design was utilized for the improvement of FLB TRFs with decreased size. The FLB-to-phospholipid molar ratio, the edge activator hydrophilic lipophilic balance, and the pH of the hydration medium all exhibited significant effects on the TRF size. The optimized/developed TRFs were unilamellar in shape. Hydroxypropyl methyl cellulose based hydrogel filled with the optimized FLB TRFs exhibited an improved ex vivo permeation when compared with the control FLB-loaded hydrogel. In addition, the optimized TRF-loaded hydrogel exhibited higher bioavailability and enhanced brain delivery relative to the control hydrogel following intranasal administration in Wistar rats. The results foreshadow the possible potential application of the proposed intranasal optimized FLB-TRF-loaded hydrogel to increase the bioavailability and nose-to-brain delivery of the drug.

Keywords: ex vivo permeation; flibanserin; hydrogel; in vivo pharmacokinetics; transfersomes

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the dec

References

  1. Eur J Pharm Sci. 2007 Dec;32(4-5):296-307 - PubMed
  2. Int J Pharm. 2010 Sep 15;397(1-2):164-72 - PubMed
  3. Cell Biol Int. 2015 Aug;39(8):881-90 - PubMed
  4. J Mater Sci Mater Med. 2019 Oct 10;30(10):115 - PubMed
  5. Int J Pharm. 2020 Jan 5;573:118817 - PubMed
  6. Int J Nanomedicine. 2018 Oct 11;13:6325-6335 - PubMed
  7. AAPS PharmSciTech. 2019 May 2;20(5):181 - PubMed
  8. Fundam Appl Toxicol. 1981 Jul-Aug;1(4):309-12 - PubMed
  9. Pharm Res. 1994 Oct;11(10):1379-84 - PubMed
  10. Int J Pharm. 2010 Mar 15;387(1-2):56-64 - PubMed
  11. Infect Immun. 2013 May;81(5):1625-34 - PubMed
  12. Int J Nanomedicine. 2018 Jun 26;13:3679-3687 - PubMed
  13. Drug Dev Ind Pharm. 2018 Mar;44(3):484-492 - PubMed
  14. J Liposome Res. 2012 Dec;22(4):336-45 - PubMed
  15. Drug Des Devel Ther. 2019 Dec 27;13:4413-4430 - PubMed
  16. Drug Deliv. 2016 Sep;23(7):2471-2481 - PubMed
  17. Biochem Biophys Res Commun. 2008 Mar 7;367(2):330-5 - PubMed
  18. J Control Release. 2007 Nov 6;123(2):148-54 - PubMed
  19. Biochim Biophys Acta. 1992 Feb 17;1104(1):226-32 - PubMed
  20. Indian J Pharm Sci. 2013 Jul;75(4):442-9 - PubMed
  21. J Sex Med. 2013 Jul;10(7):1807-15 - PubMed
  22. Int J Womens Health. 2017 Oct 11;9:757-767 - PubMed
  23. Brain Res Bull. 2018 Oct;143:155-170 - PubMed
  24. Int J Biol Macromol. 2016 Dec;93(Pt A):591-599 - PubMed
  25. Drug Des Devel Ther. 2016 Jan 12;10:205-15 - PubMed
  26. Eur J Pharm Biopharm. 2011 Jan;77(1):43-55 - PubMed
  27. J Sex Med. 2010 May;7(5):1757-67 - PubMed
  28. Life Sci. 2019 Jun 1;226:117-129 - PubMed
  29. J Sex Med. 2010 Oct;7(10):3449-59 - PubMed
  30. Drug Des Devel Ther. 2016 Apr 05;10:1323-33 - PubMed
  31. Sex Med Rev. 2017 Oct;5(4):461-469 - PubMed
  32. Drug Deliv. 2014 Feb;21(1):62-73 - PubMed
  33. J Adv Res. 2015 Mar;6(2):105-21 - PubMed
  34. Arch Pharm Res. 2016 Sep;39(9):1181-92 - PubMed
  35. Ther Deliv. 2015;6(8):1017-29 - PubMed
  36. J Drug Target. 2010 Jun;18(5):381-8 - PubMed
  37. J Pharm Sci. 2016 Mar;105(3):1209-20 - PubMed
  38. Materials (Basel). 2011 Oct 24;4(10):1861-1905 - PubMed

Publication Types

Grant support