Display options
Share it on

Front Bioeng Biotechnol. 2020 Jun 30;8:658. doi: 10.3389/fbioe.2020.00658. eCollection 2020.

Enhanced Chondrogenic Capacity of Mesenchymal Stem Cells After TNFα Pre-treatment.

Frontiers in bioengineering and biotechnology

Chantal Voskamp, Wendy J L M Koevoet, Rodrigo A Somoza, Arnold I Caplan, Véronique Lefebvre, Gerjo J V M van Osch, Roberto Narcisi

Affiliations

  1. Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, Netherlands.
  2. Department of Otorhinolaryngology, Erasmus MC, University Medical Center, Rotterdam, Netherlands.
  3. Department of Biology and Skeletal Research Center, Case Western Reserve University, Cleveland, OH, United States.
  4. Division of Orthopedic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States.

PMID: 32714905 PMCID: PMC7344141 DOI: 10.3389/fbioe.2020.00658

Abstract

Mesenchymal stem cells (MSCs) are promising cells to treat cartilage defects due to their chondrogenic differentiation potential. However, an inflammatory environment during differentiation, such as the presence of the cytokine TNFα, inhibits chondrogenesis and limits the clinical use of MSCs. On the other hand, it has been reported that exposure to TNFα during

Copyright © 2020 Voskamp, Koevoet, Somoza, Caplan, Lefebvre, van Osch and Narcisi.

Keywords: SOXC transcription factors; cartilage; chondrogenesis; mesenchymal stem cells; regenerative medicine; tissue engineering; tumor necrosis factor-alpha

References

  1. Osteoarthritis Cartilage. 2016 May;24(5):868-72 - PubMed
  2. J Cell Biol. 2014 Dec 8;207(5):657-71 - PubMed
  3. Tissue Eng Part C Methods. 2008 Dec;14(4):333-9 - PubMed
  4. Tissue Eng Part A. 2016 Nov;22(21-22):1264-1273 - PubMed
  5. Cytotherapy. 2006;8(4):315-7 - PubMed
  6. Cell Death Differ. 2007 Jul;14(7):1361-73 - PubMed
  7. Biochim Biophys Acta. 1986 Sep 4;883(2):173-7 - PubMed
  8. Cell Tissue Res. 2019 May;376(2):247-255 - PubMed
  9. J Cell Biochem. 2006 Aug 1;98(5):1076-84 - PubMed
  10. Osteoarthritis Cartilage. 2012 Oct;20(10):1186-96 - PubMed
  11. Arthritis Rheum. 2009 Mar;60(3):801-12 - PubMed
  12. Exp Cell Res. 1998 Jan 10;238(1):265-72 - PubMed
  13. Cell Stem Cell. 2008 Feb 7;2(2):141-50 - PubMed
  14. Bone. 1992;13(1):81-8 - PubMed
  15. PLoS One. 2017 May 18;12(5):e0177771 - PubMed
  16. Arthritis Rheumatol. 2018 Mar;70(3):371-382 - PubMed
  17. Nat Rev Immunol. 2015 Jun;15(6):362-74 - PubMed
  18. Arthritis Res Ther. 2014 Sep 26;16(5):441 - PubMed
  19. J Bone Miner Res. 2015 Sep;30(9):1560-71 - PubMed
  20. Eur Cell Mater. 2016 Jun 24;31:425-39 - PubMed
  21. Curr Opin Rheumatol. 2011 Sep;23(5):471-8 - PubMed
  22. Development. 2008 Oct;135(19):3247-57 - PubMed
  23. Stem Cells. 2014 Dec;32(12):3266-77 - PubMed
  24. Exp Hematol. 2006 Nov;34(11):1604-5 - PubMed
  25. J Cell Biochem. 2019 Aug;120(8):13664-13679 - PubMed
  26. Biomaterials. 2010 May;31(13):3564-71 - PubMed
  27. J Orthop Res. 1991 Sep;9(5):641-50 - PubMed
  28. Curr Osteoporos Rep. 2016 Feb;14(1):32-8 - PubMed
  29. Mol Med Rep. 2016 Jul;14(1):643-8 - PubMed
  30. Tissue Eng Part A. 2010 Feb;16(2):489-99 - PubMed
  31. J Cell Mol Med. 2017 Sep;21(9):2077-2091 - PubMed
  32. Int J Inflam. 2015;2015:329792 - PubMed
  33. J Mol Med (Berl). 2008 Oct;86(10):1183-92 - PubMed
  34. Science. 1999 Apr 2;284(5411):143-7 - PubMed
  35. Tissue Eng Part A. 2018 Apr;24(7-8):662-671 - PubMed
  36. Osteoarthritis Cartilage. 2012 Nov;20(11):1302-8 - PubMed
  37. Arthritis Rheum. 1991 Sep;34(9):1125-32 - PubMed
  38. J Cell Physiol. 2000 Oct;185(1):98-106 - PubMed
  39. Mol Cell Biol. 2017 Mar 31;37(8): - PubMed
  40. Am J Sports Med. 2018 Dec;46(14):3521-3531 - PubMed
  41. Knee. 2020 Jan;27(1):51-60 - PubMed
  42. Stem Cell Reports. 2015 Mar 10;4(3):459-72 - PubMed
  43. Biorheology. 2002;39(1-2):237-46 - PubMed
  44. Nat Rev Rheumatol. 2011 Jan;7(1):33-42 - PubMed
  45. Circ Res. 2004 Mar 19;94(5):678-85 - PubMed
  46. Osteoarthritis Cartilage. 2010 May;18(5):705-13 - PubMed

Publication Types

Grant support