Display options
Share it on

Chempluschem. 2020 Jul;85(7):1455-1464. doi: 10.1002/cplu.202000387.

Chiral Self-Sorting Effects in the Self-Assembly of Metallosupramolecular Aggregates Comprising Ligands Derived from Tröger's Base.

ChemPlusChem

Andreas Jarzebski, Gregor Schnakenburg, Arne Lützen

Affiliations

  1. University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.
  2. University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany.

PMID: 32644289 DOI: 10.1002/cplu.202000387

Abstract

Five ligands with either nitrile or isonitrile metal binding motifs have been synthesized based on the 2,8- or 3,9-disubstituted Tröger's base scaffold, respectively. These ligands self-assemble into dinuclear cyclic metallosupramolecular aggregates upon coordination to [(dppp)Pd(OTf)

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: metallosupramolecular chemistry; nitrile ligands; palladium; self-assembly; self-sorting

References

  1.   - PubMed
  2. A. Wu, L. Isaacs, J. Am. Chem. Soc. 2003, 125, 4831-4835; - PubMed
  3. K. Osowska, O. Miljanić, Synlett 2011, 2011, 1643-1648; - PubMed
  4. M. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784-5814; - PubMed
  5. M. Lal Saha, M. Schmittel, Org. Biomol. Chem. 2012, 10, 4651-4684; - PubMed
  6. Z. He, W. Jiang, C. A. Schalley, Chem. Soc. Rev. 2015, 44, 779-789; - PubMed
  7. K. Acharyya, P. S. Mukherjee, Angew. Chem. 2019, 131, 8732-8745; - PubMed
  8. Angew. Chem. Int. Ed. 2019, 58, 8640-8653. - PubMed
  9. R. Krämer, J.-M. Lehn, A. Marquis-Rigault, Proc. Natl. Acad. Sci. USA 1993, 90, 5394-5398. - PubMed
  10. P. N. Taylor, H. L. Anderson, J. Am. Chem. Soc. 1999, 121, 11538-11545. - PubMed
  11. T. W. Kim, J.-I. Hong, M. S. Lah, Chem. Commun. 2001, 743-744. - PubMed
  12. A. Shivanyuk, J. Rebek, J. Am. Chem. Soc. 2002, 124, 12074-12075. - PubMed
  13. H. Jędrzejewska, A. Szumna, Chem. Rev. 2017, 117, 4863-4899. - PubMed
  14.   - PubMed
  15. D. K. Smith, Chem. Soc. Rev. 2009, 38, 684-694; - PubMed
  16. T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, E. W. Meijer, Chem. Rev. 2009, 109, 5687-5754; - PubMed
  17. K. Sato, Y. Itoh, T. Aida, Chem. Sci. 2014, 5, 136-140; - PubMed
  18. M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304-7397. - PubMed
  19.   - PubMed
  20. M. Crego-Calama, D. N. Reinhoudt, Eds., Supramolecular Chirality, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006; - PubMed
  21. F. R. Keene, Ed., Chirality in Supramolecular Assemblies: Causes and Consequences, John Wiley & Sons, Ltd, Chichester, UK, 2016. - PubMed
  22. Examples for social chiral self-sorting of ligands with chelating metal binding motifs: - PubMed
  23. M. Kitamura, S. Okada, S. Suga, R. Noyori, J. Am. Chem. Soc. 1989, 111, 4028-4036; - PubMed
  24. H. C. Aspinall, J. F. Bickley, J. L. M. Dwyer, N. Greeves, R. V. Kelly, A. Steiner, Organometallics 2000, 19, 5416-5423; - PubMed
  25. R. Wang, M. Hong, D. Yuan, Y. Sun, L. Xu, J. Luo, R. Cao, A. S. C. Chan, Eur. J. Inorg. Chem. 2004, 37-43; - PubMed
  26. J. M. Takacs, P. M. Hrvatin, J. M. Atkins, D. S. Reddy, J. L. Clark, New J. Chem. 2005, 29, 263-265. - PubMed
  27. Examples for social chiral self-sorting of ligands with monodentate metal binding motifs: - PubMed
  28. C. G. Claessens, T. Torres, J. Am. Chem. Soc. 2002, 124, 14522-14523; - PubMed
  29. T. J. Burchell, R. J. Puddephatt, Inorg. Chem. 2005, 44, 3718-3730; - PubMed
  30. M. Mizumura, H. Shinokubo, A. Osuka, Angew. Chem. 2008, 120, 5458-5461; - PubMed
  31. Angew. Chem. Int. Ed. 2008, 47, 5378-5381; - PubMed
  32. C. G. Claessens, I. Sánchez-Molina, T. Torres, Supramol. Chem. 2009, 21, 44-47; - PubMed
  33. T. Weilandt, U. Kiehne, G. Schnakenburg, A. Lützen, Chem. Commun. 2009, 2320-2322; - PubMed
  34. T. Weilandt, U. Kiehne, J. Bunzen, G. Schnakenburg, A. Lützen, Chem. Eur. J. 2010, 16, 2418-2426; - PubMed
  35. J. J. Henkelis, C. J. Carruthers, S. E. Chambers, R. Clowes, A. I. Cooper, J. Fisher, M. J. Hardie, J. Am. Chem. Soc. 2014, 136, 14393-14396; - PubMed
  36. L. Volbach, N. Struch, F. Bohle, F. Topić, G. Schnakenburg, A. Schneider, S. Grimme, K. Rissanen, A. Lützen, Chem. Eur. J. 2020, 26, 3335-3347. - PubMed
  37. Examples for narcissistic chiral self-sorting of ligands with chelating metal binding motifs: - PubMed
  38. D. L. Caulder, K. N. Raymond, Angew. Chem. 1997, 109, 1508-1510; - PubMed
  39. Angew. Chem. Int. Ed. Engl. 1997, 36, 1440-1442; - PubMed
  40. M. A. Masood, E. J. Enemark, T. D. P. Stack, Angew. Chem. 1998, 110, 973-977; - PubMed
  41. Angew. Chem. Int. Ed. 1998, 37, 928-932; - PubMed
  42. M. Albrecht, M. Schneider, H. Röttele, Angew. Chem. 1999, 111, 512-515; - PubMed
  43. Angew. Chem. Int. Ed. 1999, 38, 557-559; - PubMed
  44. J.-M. Vincent, C. Philouze, I. Pianet, J.-B. Verlhac, Chem. Eur. J. 2000, 6, 3595-3599; - PubMed
  45. A. Lützen, M. Hapke, J. Griep-Raming, D. Haase, W. Saak, Angew. Chem. 2002, 114, 2190-2194; - PubMed
  46. Angew. Chem. Int. Ed. 2002, 41, 2086-2089; - PubMed
  47. M. Albrecht, R. Fröhlich, Bull. Chem. Soc. Jpn. 2007, 80, 797-808; - PubMed
  48. U. Kiehne, T. Weilandt, A. Lützen, Org. Lett. 2007, 9, 1283-1286; - PubMed
  49. P. L. Arnold, J.-C. Buffet, R. P. Blaudeck, S. Sujecki, A. J. Blake, C. Wilson, Angew. Chem. 2008, 120, 6122-6125; - PubMed
  50. Angew. Chem. Int. Ed. 2008, 47, 6033-6036; - PubMed
  51. J. Bunzen, T. Bruhn, G. Bringmann, A. Lützen, J. Am. Chem. Soc. 2009, 131, 3621-3630; - PubMed
  52. N. Dalla-Favera, U. Kiehne, J. Bunzen, S. Hytteballe, A. Lützen, C. Piguet, Angew. Chem. 2010, 122, 129-132; - PubMed
  53. Angew. Chem. Int. Ed. 2010, 49, 125-128; - PubMed
  54. C. Gütz, R. Hovorka, N. Struch, J. Bunzen, G. Meyer-Eppler, Z.-W. Qu, S. Grimme, F. Topić, K. Rissanen, M. Cetina, M. Engeser, A. Lützen, J. Am. Chem. Soc. 2014, 136, 11830-11838; - PubMed
  55. A. Jarzebski, C. Tenten, C. Bannwarth, G. Schnakenburg, S. Grimme, A. Lützen, Chem. Eur. J. 2017, 23, 12380-12386; - PubMed
  56. N. Struch, C. Frömbgen, G. Schnakenburg, A. Lützen, Eur. J. Org. Chem. 2017, 4984-4989; - PubMed
  57. J. Anhäuser, R. Putteddy, L. Glanz, A. Schneider, M. Engeser, K. Rissanen, A. Lützen, Chem. Eur. J. 2019, 25, 12294-12297. - PubMed
  58. Examples for narcissistiwc chiral self-sorting of ligands with monodentate metal binding motifs: - PubMed
  59. L. Isaacs, D. Witt, Angew. Chem. 2002, 114, 1985-1987; - PubMed
  60. Angew. Chem. Int. Ed. 2002, 41, 1905-1907; - PubMed
  61. H.-J. Kim, D. Moon, M. S. Lah, J.-I. Hong, Angew. Chem. 2002, 114, 3306-3309; - PubMed
  62. Angew. Chem. Int. Ed. 2002, 41, 3174-3177; - PubMed
  63. I.-W. Hwang, T. Kamada, T. K. Ahn, D. M. Ko, T. Nakamura, A. Tsuda, A. Osuka, D. Kim, J. Am. Chem. Soc. 2004, 126, 16187-16198; - PubMed
  64. T. J. Burchell, R. J. Puddephatt, Inorg. Chem. 2006, 45, 650-659; - PubMed
  65. T. Kamada, N. Aratani, T. Ikeda, N. Shibata, Y. Higuchi, A. Wakamiya, S. Yamaguchi, K. S. Kim, Z. S. Yoon, D. Kim, A. Osuka, J. Am. Chem. Soc. 2006, 128, 7670-7678; - PubMed
  66. C. Maeda, T. Kamada, N. Aratani, A. Osuka, Coord. Chem. Rev. 2007, 251, 2743-2752; - PubMed
  67. T. K. Ronson, J. Fisher, L. P. Harding, M. J. Hardie, Angew. Chem. 2007, 119, 9244-9246; - PubMed
  68. Angew. Chem. Int. Ed. 2007, 46, 9086-9088; - PubMed
  69. K. Schober, H. Zhang, R. M. Gschwind, J. Am. Chem. Soc. 2008, 130, 12310-12317; - PubMed
  70. C. Gütz, R. Hovorka, G. Schnakenburg, A. Lützen, Chem. Eur. J. 2013, 19, 10890-10894; - PubMed
  71. C. Gütz, R. Hovorka, C. Stobe, N. Struch, F. Topić, G. Schnakenburg, K. Rissanen, A. Lützen, Eur. J. Org. Chem. 2014, 2014, 206-216; - PubMed
  72. G. Meyer-Eppler, F. Topić, G. Schnakenburg, K. Rissanen, A. Lützen, Eur. J. Inorg. Chem. 2014, 2014, 2495-2501; - PubMed
  73. R. Hovorka, S. Hytteballe, T. Piehler, G. Meyer-Eppler, F. Topić, K. Rissanen, M. Engeser, A. Lützen, Beilstein J. Org. Chem. 2014, 10, 432-441; - PubMed
  74. T. Tateishi, T. Kojima, S. Hiraoka, Commun. Chem. 2018, 1, 20; - PubMed
  75. S. Kai, T. Kojima, F. L. Thorp-Greenwood, M. J. Hardie, S. Hiraoka, Chem. Sci. 2018, 9, 4104-4108; - PubMed
  76. J. Anhäuser, R. Puttreddy, Y. Lorenz, A. Schneider, M. Engeser, K. Rissanen, A. Lützen, Org. Chem. Front. 2019, 6, 1226-1235. - PubMed
  77.   - PubMed
  78. P. S. Mukherjee, N. Das, P. J. Stang, J. Org. Chem. 2004, 69, 3526-3529; - PubMed
  79. M. D. Ward, Chem. Commun. 2009, 4487-4499; - PubMed
  80. V. K. Jain, L. Jain, Coord. Chem. Rev. 2010, 254, 2848-2903; - PubMed
  81. M. Yoshizawa, M. Fujita, Bull. Chem. Soc. Jpn. 2010, 83, 609-618; - PubMed
  82. R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810-6918; - PubMed
  83. Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349-358; - PubMed
  84. H. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 2012, 112, 2015-2041; - PubMed
  85. N. B. Debata, D. Tripathy, D. K. Chand, Coord. Chem. Rev. 2012, 256, 1831-1945. - PubMed
  86. A. Jarzebski, C. Bannwarth, C. Tenten, C. Benkhäuser, G. Schnakenburg, S. Grimme, A. Lützen, Synthesis 2015, 47, 3118-3132. - PubMed
  87.   - PubMed
  88. I. Ugi, Isonitrile Chemistry, Academic Press, New York, 1971; - PubMed
  89. R. W. Date, E. F. Iglesias, K. E. Rowe, J. M. Elliott, D. W. Bruce, Dalton Trans. 2003, 1914-1931. - PubMed
  90. M. L. Kuznetsov, Russ. Chem. Rev. 2002, 71, 265-282. - PubMed
  91.   - PubMed
  92. J. Jensen, K. Wärnmark, Synthesis 2001, 1873-1877; - PubMed
  93. A. Hansson, J. Jensen, O. F. Wendt, K. Wärnmark, Eur. J. Org. Chem. 2003, 3179-3188. - PubMed
  94. U. Kiehne, A. Lützen, Eur. J. Org. Chem. 2007, 5703-5711. - PubMed
  95. D. A. Lenev, K. A. Lyssenko, D. G. Golovanov, O. R. Malyshev, P. A. Levkin, R. G. Kostyanovsky, Tetrahedron Lett. 2006, 47, 319-321. - PubMed
  96.   - PubMed
  97. U. Kiehne, T. Bruhn, G. Schnakenburg, R. Fröhlich, G. Bringmann, A. Lützen, Chem. Eur. J. 2008, 14, 4246-4255; - PubMed
  98. C. Benkhäuser-Schunk, B. Wezisla, K. Urbahn, U. Kiehne, J. Daniels, G. Schnakenburg, F. Neese, A. Lützen, ChemPlusChem 2012, 77, 396-403. - PubMed
  99. P. J. Stang, D. H. Cao, S. Saito, A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273-6283. - PubMed
  100. Please note that in a scenario where a self-assembly process leads exclusively to [(dppp)2Pd2(L)2](X)4 complexes like in the examples presented here, the self-assembly of enantiomerically pure ligands can only result in the formation of homochiral aggregates whereas the corresponding racemic ligands can, in principle, give rise to two diastereomeric aggregates - the racemic mixture of the homochiral aggregates and the achiral heterochiral diastereomer. - PubMed
  101. 31P NMR shift information are generally very sensitive probes to evaluate the (diastereo-)selectivity of self-assembly processes of metallosupramolecular aggregates because the spectra usually only contain only few signals that are well separated due to the large sweep width of the spectra. Thus, they do not only nicely reflect the symmetry of the aggregates but the large sweep width of the spectra usually also leads to significant chemical shift differences of the signals of the corresponding 31P nuclei in different diastereomers. - PubMed
  102. U. Kiehne, A. Lützen, Synthesis 2004, 1687-1695. - PubMed
  103.   - PubMed
  104. C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652-1671; - PubMed
  105. S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009. - PubMed
  106. L. Zhu, M. Patel, M. Zhang, Tetrahedron Lett. 2008, 49, 2734-2737. - PubMed
  107. Please note that the inversion of the sign of the experimentally observed specific optical rotation of Tröger's bases of a given configuration upon changing the scaffold's substitution pattern from 2,8-disubstituted to 3,9-disubstituted is In excellent agreement with theoretical predictions, see ref. 14. - PubMed
  108. R. H. Blessing, Acta Crystallogr. 1995, A51, 33-38. - PubMed
  109. G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3-8. - PubMed
  110. G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8. - PubMed
  111. The crystals of [(dppp)2Pd2{(5S,11S)-4}{(5R,11R)-4}](OTf)4 were of low quality. Unfortunately, all attempts to obtain crystals of better quality, and thus, better data sets failed so far. Since only the relative stereochemistry of the two Tröger's bases is relevant here, we feel safe that the overall assumption is still valid with this data set of reduced quality. - PubMed

Publication Types