Display options
Share it on

Glia. 2020 Dec;68(12):2705-2724. doi: 10.1002/glia.23880. Epub 2020 Jul 09.

Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells.

Glia

Inês Dinis Aires, Teresa Ribeiro-Rodrigues, Raquel Boia, Steve Catarino, Henrique Girão, António Francisco Ambrósio, Ana Raquel Santiago

Affiliations

  1. Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
  2. Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
  3. Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
  4. Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.

PMID: 32645245 DOI: 10.1002/glia.23880

Abstract

Glaucoma is a degenerative disease that causes irreversible loss of vision and is characterized by retinal ganglion cell (RGC) loss. Others and we have demonstrated that chronic neuroinflammation mediated by reactive microglial cells plays a role in glaucomatous pathology. Exosomes are extracellular vesicles released by most cells, including microglia, that mediate intercellular communication. The role of microglial exosomes in glaucomatous degeneration remains unknown. Taking the prominent role of microglial exosomes in brain neurodegenerative diseases, we studied the contribution of microglial-derived exosomes to the inflammatory response in experimental glaucoma. Microglial cells were exposed to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure, the main risk factor for glaucoma. Naïve microglia (BV-2 cells or retinal microglia) were exposed to exosomes derived from BV-2 cells under EHP conditions (BV-Exo-EHP) or cultured in control pressure (BV-Exo-Control). We found that BV-Exo-EHP increased the production of pro-inflammatory cytokines, promoted retinal microglia motility, phagocytic efficiency, and proliferation. Furthermore, the incubation of primary retinal neural cell cultures with BV-Exo-EHP increased cell death and the production of reactive oxygen species. Exosomes derived from retinal microglia (MG-Exo-Control or MG-Exo-EHP) were injected in the vitreous of C57BL/6J mice. MG-Exo-EHP sustained activation of retinal microglia, mediated cell death, and impacted RGC number. Herein, we show that exosomes derived from retinal microglia have an autocrine function and propagate the inflammatory signal in conditions of elevated pressure, contributing to retinal degeneration in glaucomatous conditions.

© 2020 Wiley Periodicals LLC.

Keywords: exosomes; extracellular vesicles; glaucoma; inflammation; microglia; neurodegeneration; retina

References

  1. Agosta, F., Dalla Libera, D., Spinelli, E. G., Finardi, A., Canu, E., Bergami, A., … Furlan, R. (2014). Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Annals of Neurology, 76(6), 813-825. https://doi.org/10.1002/ana.24235 - PubMed
  2. Aires, I. D., Boia, R., Rodrigues-Neves, A. C., Madeira, M. H., Marques, C., Ambrosio, A. F., & Santiago, A. R. (2019). Blockade of microglial adenosine A2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia, 67, 896-914. https://doi.org/10.1002/glia.23579 - PubMed
  3. Aires, I. D., Madeira, M. H., Boia, R., Rodrigues-Neves, A. C., Martins, J. M., Ambrosio, A. F., & Santiago, A. R. (2019). Intravitreal injection of adenosine A2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Scientific Reports, 9(1), 17207. https://doi.org/10.1038/s41598-019-53627-y - PubMed
  4. Almasieh, M., Wilson, A. M., Morquette, B., Cueva Vargas, J. L., & di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in Retinal and Eye Research, 31(2), 152-181. https://doi.org/10.1016/j.preteyeres.2011.11.002 - PubMed
  5. Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., … Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nature Neuroscience, 18(11), 1584-1593. https://doi.org/10.1038/nn.4132 - PubMed
  6. Blandford, S. N., Galloway, D. A., & Moore, C. S. (2018). The roles of extracellular vesicle microRNAs in the central nervous system. Glia, 66(11), 2267-2278. https://doi.org/10.1002/glia.23445 - PubMed
  7. Block, M. L., & Hong, J. S. (2005). Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology, 76(2), 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004 - PubMed
  8. Boia, R., Elvas, F., Madeira, M. H., Aires, I. D., Rodrigues-Neves, A. C., Tralhao, P., … Santiago, A. R. (2017). Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death & Disease, 8(10), e3065. https://doi.org/10.1038/cddis.2017.451 - PubMed
  9. Bosco, A., Romero, C. O., Ambati, B. K., & Vetter, M. L. (2015). In vivo dynamics of retinal microglial activation during neurodegeneration: Confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma. Journal of Visualized Experiments, 99, e52731. https://doi.org/10.3791/52731 - PubMed
  10. Bosco, A., Romero, C. O., Breen, K. T., Chagovetz, A. A., Steele, M. R., Ambati, B. K., & Vetter, M. L. (2015). Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Disease Models & Mechanisms, 8(5), 443-455. https://doi.org/10.1242/dmm.018788 - PubMed
  11. Bosco, A., Steele, M. R., & Vetter, M. L. (2011). Early microglia activation in a mouse model of chronic glaucoma. The Journal of Comparative Neurology, 519(4), 599-620. https://doi.org/10.1002/cne.22516 - PubMed
  12. Budnik, V., Ruiz-Canada, C., & Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews. Neuroscience, 17(3), 160-172. https://doi.org/10.1038/nrn.2015.29 - PubMed
  13. Chang, C., Lang, H., Geng, N., Wang, J., Li, N., & Wang, X. (2013). Exosomes of BV-2 cells induced by alpha-synuclein: Important mediator of neurodegeneration in PD. Neuroscience Letters, 548, 190-195. https://doi.org/10.1016/j.neulet.2013.06.009 - PubMed
  14. Chua, J., Vania, M., Cheung, C. M., Ang, M., Chee, S. P., Yang, H., … Wong, T. T. (2012). Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Molecular Vision, 18, 431-438. - PubMed
  15. Colombo, M., Raposo, G., & Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326 - PubMed
  16. Croese, T., & Furlan, R. (2018). Extracellular vesicles in neurodegenerative diseases. Molecular Aspects of Medicine, 60, 52-61. https://doi.org/10.1016/j.mam.2017.11.006 - PubMed
  17. Drago, F., Lombardi, M., Prada, I., Gabrielli, M., Joshi, P., Cojoc, D., … Verderio, C. (2017). ATP modifies the proteome of extracellular vesicles released by microglia and influences their action on astrocytes. Frontiers in Pharmacology, 8, 910. https://doi.org/10.3389/fphar.2017.00910 - PubMed
  18. Glebov, K., Lochner, M., Jabs, R., Lau, T., Merkel, O., Schloss, P., … Walter, J. (2015). Serotonin stimulates secretion of exosomes from microglia cells. Glia, 63(4), 626-634. https://doi.org/10.1002/glia.22772 - PubMed
  19. Guo, M., Wang, J., Zhao, Y., Feng, Y., Han, S., Dong, Q., … Tieu, K. (2020). Microglial exosomes facilitate alpha-synuclein transmission in Parkinson's disease. Brain, 143, 1476-1497. https://doi.org/10.1093/brain/awaa090 - PubMed
  20. Henn, A., Lund, S., Hedtjarn, M., Schrattenholz, A., Porzgen, P., & Leist, M. (2009). The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX, 26(2), 83-94. https://doi.org/10.14573/altex.2009.2.83 - PubMed
  21. Horvath, R. J., Nutile-McMenemy, N., Alkaitis, M. S., & Deleo, J. A. (2008). Differential migration, LPS-induced cytokine, chemokine, and NO expression in immortalized BV-2 and HAPI cell lines and primary microglial cultures. Journal of Neurochemistry, 107(2), 557-569. https://doi.org/10.1111/j.1471-4159.2008.05633.x - PubMed
  22. Hsieh, C. L., Koike, M., Spusta, S. C., Niemi, E. C., Yenari, M., Nakamura, M. C., & Seaman, W. E. (2009). A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. Journal of Neurochemistry, 109(4), 1144-1156. https://doi.org/10.1111/j.1471-4159.2009.06042.x - PubMed
  23. Janas, A. M., Sapon, K., Janas, T., Stowell, M. H., & Janas, T. (2016). Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases. Biochimica et Biophysica Acta, 1858(6), 1139-1151. https://doi.org/10.1016/j.bbamem.2016.02.011 - PubMed
  24. Jonas, R. A., Yuan, T. F., Liang, Y. X., Jonas, J. B., Tay, D. K., & Ellis-Behnke, R. G. (2012). The spider effect: Morphological and orienting classification of microglia in response to stimuli in vivo. PLoS One, 7(2), e30763. https://doi.org/10.1371/journal.pone.0030763 - PubMed
  25. Joshi, P., Turola, E., Ruiz, A., Bergami, A., Libera, D. D., Benussi, L., … Verderio, C. (2014). Microglia convert aggregated amyloid-beta into neurotoxic forms through the shedding of microvesicles. Cell Death and Differentiation, 21(4), 582-593. https://doi.org/10.1038/cdd.2013.180 - PubMed
  26. Karlstetter, M., Ebert, S., & Langmann, T. (2010). Microglia in the healthy and degenerating retina: Insights from novel mouse models. Immunobiology, 215(9-10), 685-691. https://doi.org/10.1016/j.imbio.2010.05.010 - PubMed
  27. Karlstetter, M., Nothdurfter, C., Aslanidis, A., Moeller, K., Horn, F., Scholz, R., … Langmann, T. (2014). Translocator protein (18 kDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. Journal of Neuroinflammation, 11, 3. https://doi.org/10.1186/1742-2094-11-3 - PubMed
  28. Kawabori, M., Kacimi, R., Kauppinen, T., Calosing, C., Kim, J. Y., Hsieh, C. L., … Yenari, M. A. (2015). Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. The Journal of Neuroscience, 35(8), 3384-3396. https://doi.org/10.1523/JNEUROSCI.2620-14.2015 - PubMed
  29. Kettenmann, H., Hanisch, U. K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91(2), 461-553. https://doi.org/10.1152/physrev.00011.2010 - PubMed
  30. Kowal, J., Tkach, M., & Thery, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, 116-125. https://doi.org/10.1016/j.ceb.2014.05.004 - PubMed
  31. Kumar, A., Stoica, B. A., Loane, D. J., Yang, M., Abulwerdi, G., Khan, N., … Faden, A. I. (2017). Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. Journal of Neuroinflammation, 14(1), 47. https://doi.org/10.1186/s12974-017-0819-4 - PubMed
  32. Lasser, C., Eldh, M., & Lotvall, J. (2012). Isolation and characterization of RNA-containing exosomes. Journal of Visualized Experiments, 59, e3037. https://doi.org/10.3791/3037 - PubMed
  33. Lee, M. (2013). Neurotransmitters and microglial-mediated neuroinflammation. Current Protein & Peptide Science, 14(1), 21-32. https://doi.org/10.2174/1389203711314010005 - PubMed
  34. Liu, G. J., Middleton, R. J., Hatty, C. R., Kam, W. W., Chan, R., Pham, T., … Banati, R. B. (2014). The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathology, 24(6), 631-653. https://doi.org/10.1111/bpa.12196 - PubMed
  35. Madeira, M. H., Boia, R., Elvas, F., Martins, T., Cunha, R. A., Ambrosio, A. F., & Santiago, A. R. (2016). Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Translational Research, 169, 112-128. https://doi.org/10.1016/j.trsl.2015.11.005 - PubMed
  36. Madeira, M. H., Boia, R., Santos, P. F., Ambrósio, A. F., & Santiago, A. R. (2015). Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators of Inflammation, 2015, 673090. https://doi.org/10.1155/2015/673090 - PubMed
  37. Madeira, M. H., Elvas, F., Boia, R., Goncalves, F. Q., Cunha, R. A., Ambrosio, A. F., & Santiago, A. R. (2015). Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. Journal of Neuroinflammation, 12, 115. https://doi.org/10.1186/s12974-015-0333-5 - PubMed
  38. Madeira, M. H., Ortin-Martinez, A., Nadal-Nicolas, F., Ambrósio, A. F., Vidal-Sanz, M., Agudo-Barriuso, M., & Santiago, A. R. (2016). Caffeine administration prevents retinal neuroinflammation and loss of retinal ganglion cells in an animal model of glaucoma. Scientific Reports, 6, 27532. https://doi.org/10.1038/srep27532 - PubMed
  39. Matlach, J., Bender, S., Konig, J., Binder, H., Pfeiffer, N., & Hoffmann, E. M. (2019). Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clinical Ophthalmology, 13, 9-16. https://doi.org/10.2147/OPTH.S186526 - PubMed
  40. Paolicelli, R. C., Bergamini, G., & Rajendran, L. (2019). Cell-to-cell communication by extracellular vesicles: Focus on microglia. Neuroscience, 405, 148-157. https://doi.org/10.1016/j.neuroscience.2018.04.003 - PubMed
  41. Prada, I., Furlan, R., Matteoli, M., & Verderio, C. (2013). Classical and unconventional pathways of vesicular release in microglia. Glia, 61(7), 1003-1017. https://doi.org/10.1002/glia.22497 - PubMed
  42. Ramírez, A. I., de Hoz, R., Salobrar-Garcia, E., Salazar, J. J., Rojas, B., Ajoy, D., … Ramírez, J. M. (2017). The role of microglia in retinal neurodegeneration: Alzheimer's disease, Parkinson, and glaucoma. Frontiers in Aging Neuroscience, 9, 214. https://doi.org/10.3389/fnagi.2017.00214 - PubMed
  43. Reichenbach, A., & Bringmann, A. (2020). Glia of the human retina. Glia, 68(4), 768-796. https://doi.org/10.1002/glia.23727 - PubMed
  44. Ribeiro-Rodrigues, T. M., Laundos, T. L., Pereira-Carvalho, R., Batista-Almeida, D., Pereira, R., Coelho-Santos, V., … Girao, H. (2017). Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 113(11), 1338-1350. https://doi.org/10.1093/cvr/cvx118 - PubMed
  45. Rodrigues-Neves, A. C., Aires, I. D., Vindeirinho, J., Boia, R., Madeira, M. H., Goncalves, F. Q., … Santiago, A. R. (2018). Elevated pressure changes the purinergic system of microglial cells. Frontiers in Pharmacology, 9, 16. https://doi.org/10.3389/fphar.2018.00016 - PubMed
  46. Santiago, A. R., Cristovao, A. J., Santos, P. F., Carvalho, C. M., & Ambrósio, A. F. (2007). High glucose induces caspase-independent cell death in retinal neural cells. Neurobiology of Disease, 25(3), 464-472. https://doi.org/10.1016/j.nbd.2006.10.023 - PubMed
  47. Soares, A. R., Martins-Marques, T., Ribeiro-Rodrigues, T., Ferreira, J. V., Catarino, S., Pinho, M. J., … Girao, H. (2015). Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 5, 13243. https://doi.org/10.1038/srep13243 - PubMed
  48. Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., & Giebel, B. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces. B: Biointerfaces, 87(1), 146-150. https://doi.org/10.1016/j.colsurfb.2011.05.013 - PubMed
  49. Takeda, A., Shinozaki, Y., Kashiwagi, K., Ohno, N., Eto, K., Wake, H., … Koizumi, S. (2018). Microglia mediate non-cell-autonomous cell death of retinal ganglion cells. Glia, 66(11), 2366-2384. https://doi.org/10.1002/glia.23475 - PubMed
  50. Tezel, G. (2011). The immune response in glaucoma: A perspective on the roles of oxidative stress. Experimental Eye Research, 93(2), 178-186. https://doi.org/10.1016/j.exer.2010.07.009 - PubMed
  51. Tezel, G., & Wax, M. B. (2000). Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. The Journal of Neuroscience, 20(23), 8693-8700. - PubMed
  52. Tezel, G., Yang, X., Luo, C., Peng, Y., Sun, S. L., & Sun, D. (2007). Mechanisms of immune system activation in glaucoma: Oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Investigative Ophthalmology & Visual Science, 48(2), 705-714. https://doi.org/10.1167/iovs.06-0810 - PubMed
  53. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., … Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244-1247. https://doi.org/10.1126/science.1153124 - PubMed
  54. Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X., & Sharma, S. C. (2016). Glia-neuron interactions in the mammalian retina. Progress in Retinal and Eye Research, 51, 1-40. https://doi.org/10.1016/j.preteyeres.2015.06.003 - PubMed
  55. Verderio, C., Muzio, L., Turola, E., Bergami, A., Novellino, L., Ruffini, F., … Furlan, R. (2012). Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Annals of Neurology, 72(4), 610-624. https://doi.org/10.1002/ana.23627 - PubMed
  56. Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: Regulation of exosome loading. Seminars in Cancer Biology, 28, 3-13. https://doi.org/10.1016/j.semcancer.2014.04.009 - PubMed
  57. Vohra, R., Tsai, J. C., & Kolko, M. (2013). The role of inflammation in the pathogenesis of glaucoma. Survey of Ophthalmology, 58(4), 311-320. https://doi.org/10.1016/j.survophthal.2012.08.010 - PubMed
  58. von Bernhardi, R., Eugenin-von Bernhardi, L., & Eugenin, J. (2015). Microglial cell dysregulation in brain aging and neurodegeneration. Frontiers in Aging Neuroscience, 7, 124. https://doi.org/10.3389/fnagi.2015.00124 - PubMed
  59. Wang, J. W., Chen, S. D., Zhang, X. L., & Jonas, J. B. (2016). Retinal microglia in glaucoma. Journal of Glaucoma, 25(5), 459-465. https://doi.org/10.1097/IJG.0000000000000200 - PubMed
  60. Wang, K., Peng, B., & Lin, B. (2014). Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Glia, 62(12), 1943-1954. https://doi.org/10.1002/glia.22715 - PubMed
  61. Wang, M., Wang, X., Zhao, L., Ma, W., Rodriguez, I. R., Fariss, R. N., & Wong, W. T. (2014). Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. The Journal of Neuroscience, 34(10), 3793-3806. https://doi.org/10.1523/JNEUROSCI.3153-13.2014 - PubMed
  62. Wolf, S. A., Boddeke, H. W., & Kettenmann, H. (2017). Microglia in physiology and disease. Annual Review of Physiology, 79, 619-643. https://doi.org/10.1146/annurev-physiol-022516-034406 - PubMed
  63. Xu, W., Wu, Y., Hu, Z., Sun, L., Dou, G., Zhang, Z., … Wang, Y. (2019). Exosomes from microglia attenuate photoreceptor injury and neovascularization in an animal model of retinopathy of prematurity. Molecular Therapy: Nucleic Acids, 16, 778-790. https://doi.org/10.1016/j.omtn.2019.04.029 - PubMed
  64. Yang, Y., Boza-Serrano, A., Dunning, C. J. R., Clausen, B. H., Lambertsen, K. L., & Deierborg, T. (2018). Inflammation leads to distinct populations of extracellular vesicles from microglia. Journal of Neuroinflammation, 15(1), 168. https://doi.org/10.1186/s12974-018-1204-7 - PubMed
  65. Yuan, L., & Neufeld, A. H. (2001). Activated microglia in the human glaucomatous optic nerve head. Journal of Neuroscience Research, 64(5), 523-532. https://doi.org/10.1002/jnr.1104 - PubMed
  66. Zhao, Y., Weber, S. R., Lease, J., Russo, M., Siedlecki, C. A., Xu, L. C., … Sundstrom, J. M. (2018). Liquid biopsy of vitreous reveals an abundant vesicle population consistent with the size and morphology of exosomes. Translational Vision Science & Technology, 7(3), 6. https://doi.org/10.1167/tvst.7.3.6 - PubMed

Publication Types