Display options
Share it on

Front Chem. 2020 Jul 03;8:534. doi: 10.3389/fchem.2020.00534. eCollection 2020.

Metal Organic Framework - Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions.

Frontiers in chemistry

Vengatesan Muthukumaraswamy Rangaraj, Mohammad A Wahab, K Suresh Kumar Reddy, George Kakosimos, Omnya Abdalla, Evangelos P Favvas, Donald Reinalda, Frank Geuzebroek, Ahmed Abdala, Georgios N Karanikolos

Affiliations

  1. Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
  2. Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar.
  3. School of Chemistry, Physics and Mechanical Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
  4. Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research "Demokritos", Attica, Greece.
  5. Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates.
  6. ADNOC Gas Processing, Department of Research and Engineering R&D, Abu Dhabi, United Arab Emirates.
  7. Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.
  8. Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates.

PMID: 32719772 PMCID: PMC7350925 DOI: 10.3389/fchem.2020.00534

Abstract

Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO

Copyright © 2020 Muthukumaraswamy Rangaraj, Wahab, Reddy, Kakosimos, Abdalla, Favvas, Reinalda, Geuzebroek, Abdala and Karanikolos.

Keywords: CO2; MOF; membranes; mixture; permeability; polymers; selectivity; separation

References

  1. Chem Asian J. 2013 Aug;8(8):1692-704 - PubMed
  2. ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4338-4344 - PubMed
  3. Chem Rev. 2012 Feb 8;112(2):1232-68 - PubMed
  4. Angew Chem Int Ed Engl. 2010 Dec 17;49(51):9863-6 - PubMed
  5. ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14750-7 - PubMed
  6. Chem Commun (Camb). 2012 Sep 28;48(75):9370-2 - PubMed
  7. ACS Appl Mater Interfaces. 2015 Nov 18;7(45):25193-201 - PubMed
  8. Adv Mater. 2016 May;28(17):3399-405 - PubMed
  9. Angew Chem Int Ed Engl. 2012 Mar 5;51(10):2470-3 - PubMed
  10. Angew Chem Int Ed Engl. 2010 Nov 8;49(46):8630-4 - PubMed
  11. Angew Chem Int Ed Engl. 1998 Nov 16;37(21):2960-2974 - PubMed
  12. Science. 2011 Oct 7;334(6052):72-5 - PubMed
  13. Chem Soc Rev. 2011 Feb;40(2):498-519 - PubMed
  14. Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4259-63 - PubMed
  15. ACS Appl Mater Interfaces. 2019 Apr 3;11(13):13029-13037 - PubMed
  16. J Phys Chem B. 2005 Oct 13;109(40):18956-63 - PubMed
  17. ACS Appl Mater Interfaces. 2016 Nov 23;8(46):32041-32049 - PubMed
  18. Chem Soc Rev. 2014 Aug 21;43(16):5513-60 - PubMed
  19. Angew Chem Int Ed Engl. 2015 Dec 14;54(51):15483-7 - PubMed
  20. Angew Chem Int Ed Engl. 2018 Nov 5;57(45):14811-14816 - PubMed
  21. J Am Chem Soc. 2013 Jul 17;135(28):10525-32 - PubMed
  22. Sci Rep. 2015 Jan 16;5:7823 - PubMed
  23. J Am Chem Soc. 2016 Feb 24;138(7):2292-301 - PubMed
  24. J Am Chem Soc. 2018 Dec 12;140(49):17203-17210 - PubMed
  25. Chem Commun (Camb). 2011 Sep 7;47(33):9522-4 - PubMed
  26. ACS Appl Mater Interfaces. 2015 Jan 21;7(2):1065-77 - PubMed
  27. ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5609-18 - PubMed
  28. J Hazard Mater. 2016 Dec 15;320:556-563 - PubMed
  29. Chem Soc Rev. 2007 Sep;36(9):1454-65 - PubMed
  30. Spectrochim Acta A Mol Biomol Spectrosc. 2018 Apr 5;194:76-82 - PubMed
  31. Science. 2013 Aug 30;341(6149):1230444 - PubMed
  32. Acc Chem Res. 2010 Jan 19;43(1):58-67 - PubMed
  33. ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24784-24790 - PubMed
  34. Nat Mater. 2015 Jan;14(1):48-55 - PubMed
  35. Langmuir. 2013 Dec 17;29(50):15655-63 - PubMed
  36. Chem Rev. 2014 Jan 22;114(2):1413-92 - PubMed
  37. Front Chem. 2019 Jun 17;7:332 - PubMed
  38. Nat Mater. 2018 Mar;17(3):283-289 - PubMed
  39. Dalton Trans. 2019 Jun 14;48(22):7612-7618 - PubMed
  40. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22696-704 - PubMed
  41. Water Sci Technol. 2011;64(9):1892-7 - PubMed
  42. ChemSusChem. 2014 Jun;7(6):1696-702 - PubMed
  43. Chem Soc Rev. 2017 Jun 6;46(11):3108-3133 - PubMed
  44. Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9292-9310 - PubMed
  45. ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5528-37 - PubMed
  46. Langmuir. 2012 Nov 6;28(44):15606-13 - PubMed
  47. iScience. 2019 May 31;15:514-523 - PubMed
  48. ChemSusChem. 2019 Jun 7;12(11):2355-2360 - PubMed

Publication Types