Display options
Share it on

Adv Biosyst. 2017 Nov;1(11):e1700055. doi: 10.1002/adbi.201700055. Epub 2017 Jun 05.

Characterization of Covalently Bound Anti-Human Immunoglobulins on Self-Assembled Monolayer Modified Gold Electrodes.

Advanced biosystems

Brigitte Holzer, Kyriaki Manoli, Nicoletta Ditaranto, Eleonora Macchia, Amber Tiwari, Cinzia Di Franco, Gaetano Scamarcio, Gerardo Palazzo, Luisa Torsi

Affiliations

  1. Dipartimento di Chimica, Università degli Studi di Bari - "Aldo Moro", Via Orabona 4, 70126, Bari, Italy.
  2. CSGI (Center for Colloid and Surface Science) - Bari, Via Orabona 4, 70126, Bari, Italy.
  3. CNR - Istituto di Fotonica e Nanotecnologie, Sede di Bari, Via Orabona 4, 70126, Bari, Italy.
  4. Dipartimento di Fisica "M. Merlin" - Università degli Studi di Bari - "Aldo Moro", Via Orabona 4, 70126, Bari, Italy.

PMID: 32646170 DOI: 10.1002/adbi.201700055

Abstract

Bioconjugated gold surfaces constitute interesting platforms for biosensing applications. The immobilization of antibodies such as anti-immunoglobulin G and M (anti-IgG and anti-IgM) on gold electrodes via self-assembled monolayers (SAMs) is here studied as a model system for further immunoassays development. The biolayer is characterized by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), a dedicated thin-film transistor (TFT)-based platform and electrochemical surface plasmon resonance (EC-SPR). XPS analysis confirms the presence of all the chemical species involved in the fabrication process as well as the covalent attachment of the antibodies with high reproducibility. Visualization of the biolayer topography by AFM shows nanostructures with a thickness consistent with the actual size of the protein, which is also verified by SPR measurements. EC-SPR allows taking advantage of complementary electrochemical and optical signals during the functionalization steps. Moreover, the functionalization of gold leads to a change in the work function, which is demonstrated in an electrolyte gated thin-film transistor configuration. Such configuration enables also to evaluate the electrostatic changes occurring on the gate that are connected with the threshold voltage shifts. The data support that functional biomodified gold surfaces can be reproducibly prepared, which is a prerequisite for further biosensor development.

© 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: biosensors; immunoglobulin; self-assembled monolayers; surface analysis; thin-film transistors

References

  1. D. Kim, A. E. Herr, Biomicrofluidics 2013, 7, 41501. - PubMed
  2. Y. Xiao, R. Y. Lai, K. W. Plaxco, Nat. Protoc. 2007, 2, 2875. - PubMed
  3. Y. Fu, R. Yuan, D. Tang, Y. Chai, L. Xu, Colloids Surf., B 2005, 40, 61. - PubMed
  4. A. Molazemhosseini, L. Magagnin, P. Vena, C.-C. Liu, Sensors 2016, 16, 1024. - PubMed
  5. N. J. Geddes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Sambles, K. A. Than, J. A. Edgar, J. Immunol. Methods 1994, 175, 149. - PubMed
  6. P. Ihalainen, H. Majumdar, T. Viitala, B. Törngren, T. Närjeoja, A. Määttänen, J. Sarfraz, H. Härmä, M. Yliperttula, R. Österbacka, J. Peltonen, Biosensors 2012, 3, 1. - PubMed
  7. M. Vuoriluoto, H. Orelma, B. Zhu, L.-S. Johansson, O. J. Rojas, ACS Appl. Mater. Interfaces 2016, 8, 5668. - PubMed
  8. Q. Wu, D. Song, D. Zhang, Y. Sun, Microchim. Acta 2016, 183, 2177. - PubMed
  9. M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, L. Torsi, Nat. Commun. 2015, 6, 6010. - PubMed
  10. S. Casalini, F. Leonardi, T. Cramer, F. Biscarini, Org. Electron. 2013, 14, 156. - PubMed
  11. S. Casalini, A. C. Dumitru, F. Leonardi, C. A. Bortolotti, E. T. Herruzo, A. Campana, R. F. de Oliveira, T. Cramer, R. Garcia, F. Biscarini, ACS Nano 2015, 9, 5051. - PubMed
  12. T. Minamiki, T. Minami, Y. Sasaki, S. Wakida, R. Kurita, O. Niwa, S. Tokito, Sensors 2016, 16, 2033. - PubMed
  13. M. Berto, S. Casalini, M. Di Lauro, S. L. Marasso, M. Cocuzza, D. Perrone, M. Pinti, A. Cossarizza, C. F. Pirri, D. T. Simon, M. Berggren, F. Zerbetto, C. A. Bortolotti, F. Biscarini, Anal. Chem. 2016, 88, 12330. - PubMed
  14. K. Manoli, M. Magliulo, M. Y. Mulla, M. Singh, L. Sabbatini, G. Palazzo, L. Torsi, Angew. Chem. Int. Ed. 2015, 54, 12562. - PubMed
  15. A. Radzicka, R. Wolfenden, J. Am. Chem. Soc. 1996, 118, 6105. - PubMed
  16. X. Chen, R. Ferrigno, J. Yang, G. M. Whitesides, Langmuir 2002, 18, 7009. - PubMed
  17. M. Tolba, M. U. Ahmed, C. Tlili, F. Eichenseher, M. J. Loessner, M. Zourob, Analyst 2012, 137, 5749. - PubMed
  18. D. Longano, N. Ditaranto, N. Cioffi, F. Di Niso, T. Sibillano, A. Ancona, A. Conte, M. A. Del Nobile, L. Sabbatini, L. Torsi, Anal. Bioanal. Chem. 2012, 403, 1179. - PubMed
  19. Z. Lv, J. Wang, G. Chen, L. Deng, Int. J. Biol. Macromol. 2010, 47, 661. - PubMed
  20. E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, E. T. Lagally, Lab Chip 2010, 10, 581. - PubMed
  21. J. Vörös, Biophys. J. 2004, 87, 553. - PubMed
  22. Z. Lv, J. Wang, L. Deng, G. Chen, Nanoscale Res. Lett. 2009, 4, 1403. - PubMed
  23. B. Özcan, B. Demirbakan, G. Yes˛iller, M. K. Sezgintürk, Talanta 2014, 125, 7. - PubMed
  24. R. Sharma, S. E. Deacon, D. Nowak, S. E. George, M. P. Szymonik, A. A. S. Tang, D. C. Tomlinson, A. G. Davies, M. J. McPherson, C. Wälti, Biosens. Bioelectron. 2016, 80, 607. - PubMed
  25. J. W. Lee, S. J. Sim, S. M. Cho, J. Lee, Biosens. Bioelectron. 2005, 20, 1422. - PubMed
  26. Practical Surface Analysis, (Eds: D. Briggs, M. P. Seah), Wiley, New York 1990. - PubMed
  27. J. Stettner, P. Frank, T. Griesser, G. Trimmel, R. Schennach, E. Gilli, A. Winkler, Langmuir 2009, 25, 1427. - PubMed
  28. J.-E. Im, J.-A. Han, B. K. Kim, J. H. Han, T. S. Park, S. Hwang, S. In Cho, W.-Y. Lee, Y.-R. Kim, Surf. Coat. Technol. 2010, 205, S275. - PubMed
  29. S. M. Mendoza, I. Arfaoui, S. Zanarini, F. Paolucci, P. Rudolf, Langmuir 2007, 23, 582. - PubMed
  30. C. Y. Lim, N. A. Owens, R. D. Wampler, Y. Ying, J. H. Granger, M. D. Porter, M. Takahashi, K. Shimazu, Langmuir 2014, 30, 12868. - PubMed
  31. G. Hernández-Cancel, D. Suazo-Dávila, J. Medina-Guzmán, M. Rosado-González, L. M. Díaz-Vázquez, K. Griebenow, Anal. Chim. Acta 2015, 854, 129. - PubMed
  32. F. Cecchet, M. Marcaccio, M. Margotti, F. Paolucci, S. Rapino, P. Rudolf, J. Phys. Chem. B 2006, 110, 2241. - PubMed
  33. F. Marinelli, A. Dell'Aquila, L. Torsi, J. Tey, G. P. Suranna, P. Mastrorilli, G. Romanazzi, C. F. Nobile, S. G. Mhaisalkar, N. Cioffi, F. Palmisano, Sens. Actuators, B 2009, 140, 445. - PubMed
  34. L. Torsi, F. Marinelli, M. D. Angione, A. Dell'Aquila, N. Cioffi, E. D. Giglio, L. Sabbatini, Org. Electron. 2009, 10, 233. - PubMed
  35. L. Torsi, A. Dodabalapur, A. J. Lovinger, H. E. Katz, R. Ruel, D. D. Davis, K. W. Baldwin, Chem. Mater. 1995, 7, 2247. - PubMed
  36. S. P. White, K. D. Dorfman, C. D. Frisbie, Anal. Chem. 2015, 87, 1861. - PubMed
  37. M. Magliulo, D. De Tullio, I. Vikholm-Lundin, W. M. Albers, T. Munter, K. Manoli, G. Palazzo, L. Torsi, Anal. Bioanal. Chem. 2016, 408, 3943. - PubMed
  38. C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today 2015, 18, 79. - PubMed
  39. S. Emaminejad, M. Javanmard, C. Gupta, S. Chang, R. W. Davis, R. T. Howe, Proc. Natl. Acad. Sci. USA 2015, 112, 1995. - PubMed
  40. S. Chen, L. Liu, J. Zhou, S. Jiang, Langmuir 2003, 19, 2859. - PubMed
  41. M. Medina-Sánchez, C. Martínez-Domingo, E. Ramon, A. Merkoçi, Adv. Funct. Mater. 2014, 24, 6291. - PubMed
  42. N. Granqvist, H. Liang, T. Laurila, J. Sadowski, M. Yliperttula, T. Viitala, Langmuir 2013, 29, 8561. - PubMed
  43. J. Worm Winspall, 3.02., http://www.mpip-mainz.mpg.de/groups/knoll/software (accessed: December 2012). - PubMed
  44. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York 2001. - PubMed
  45. K. Awsiuk, A. Budkowski, P. Petrou, A. Bernasik, M. M. Marzec, S. Kakabakos, J. Rysz, I. Raptis, Colloids Surf., B 2013, 103, 253. - PubMed

Publication Types

Grant support