Display options
Share it on

Micromachines (Basel). 2020 Jul 14;11(7). doi: 10.3390/mi11070681.

Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle.

Micromachines

Shanguo Zhang, Guiling Li, Jia Man, Song Zhang, Jianyong Li, Jianfeng Li, Donghai Li

Affiliations

  1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
  2. Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
  3. School of Medicine, Tsinghua University, Beijing 100084, China.
  4. Advanced Medical Research Institute, Shandong University, Jinan 250012, China.

PMID: 32674334 PMCID: PMC7408603 DOI: 10.3390/mi11070681

Abstract

Three-dimensional (3D) bioprinting is a novel technology utilizing biocompatible materials, cells, drugs, etc. as basic microcomponents to form 3D artificial structures and is believed as a promising method for regenerative medicine. Droplet-based bioprinting can precisely generate microspheres and manipulate them into organized structures with high fidelity. Biocompatible hydrogels are usually used as bioinks in 3D bioprinting, however, the viscosity of the bioink could be increased due to the additives such as cells, drugs, nutrient factors and other functional polymers in some particular applications, making it difficult to form monodispersed microspheres from high-viscosity bioink at the orifice of the nozzle. In this work, we reported a novel microfluidic-based printing nozzle to prepare monodispersed microspheres from high-viscosity bioink using the phase-inversion method. Different flowing conditions can be achieved by changing the flow rates of the fluids to form monodispersed solid and hollow microspheres using the same nozzle. The diameter of the microspheres can be tuned by changing the flow rate ratio and the size distribution of the microspheres is narrow. The prepared calcium alginate microspheres could also act as micro-carriers in drug delivery.

Keywords: droplet-based bioprinting; microcomponent; microfluidic system; phase-inversion method

References

  1. Biofabrication. 2016 Sep 23;8(3):032002 - PubMed
  2. Am J Roentgenol Radium Ther Nucl Med. 1963 Nov;90:1068-77 - PubMed
  3. Biofabrication. 2019 Dec 31;12(1):015024 - PubMed
  4. Biomaterials. 2010 Oct;31(28):7250-6 - PubMed
  5. J Biomed Mater Res A. 2013 May;101(5):1255-64 - PubMed
  6. Micromachines (Basel). 2019 Nov 04;10(11): - PubMed
  7. Biomaterials. 2009 Mar;30(8):1587-95 - PubMed
  8. Adv Sci (Weinh). 2019 Apr 15;6(11):1900344 - PubMed
  9. Bioconjug Chem. 1995 Mar-Apr;6(2):203-10 - PubMed
  10. J Mater Sci Mater Med. 2019 Apr 30;30(5):55 - PubMed
  11. Adv Mater. 2016 Jan 27;28(4):677-84 - PubMed
  12. Theranostics. 2014 Jun 07;4(8):834-44 - PubMed
  13. Drug Dev Ind Pharm. 2002 Jul;28(6):621-30 - PubMed
  14. Acc Chem Res. 2009 Aug 18;42(8):1097-107 - PubMed
  15. Chem Commun (Camb). 2010 Dec 7;46(45):8633-5 - PubMed
  16. Biofabrication. 2017 Nov 14;9(4):044107 - PubMed
  17. Anal Methods. 2016 Aug 21;8(31):6005-6012 - PubMed
  18. Curr Opin Neurobiol. 2001 Aug;11(4):462-7 - PubMed
  19. Sci Adv. 2018 Aug 31;4(8):eaat1659 - PubMed
  20. Acta Biomater. 2016 Oct 1;43:112-121 - PubMed
  21. Trends Biotechnol. 2003 Apr;21(4):157-61 - PubMed
  22. Biomaterials. 2016 Jan;76:321-43 - PubMed
  23. Tissue Eng Part C Methods. 2010 Oct;16(5):847-54 - PubMed
  24. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14790-14797 - PubMed
  25. Nat Biotechnol. 2014 Aug;32(8):773-85 - PubMed
  26. Biomaterials. 2006 Jul;27(19):3560-9 - PubMed
  27. Int J Pharm. 2004 Jun 11;277(1-2):19-24 - PubMed
  28. Macromol Biosci. 2013 May;13(5):551-61 - PubMed
  29. IEEE Trans Biomed Eng. 2013 Mar;60(3):691-9 - PubMed
  30. Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3862-81 - PubMed
  31. Environ Sci Technol. 2004 Oct 1;38(19):5164-9 - PubMed
  32. Acta Biomater. 2014 Feb;10(2):630-40 - PubMed
  33. Methods Mol Biol. 2020;2140:3-18 - PubMed
  34. Lab Chip. 2020 Jun 21;20(12):2044-2056 - PubMed
  35. Tissue Eng Part A. 2008 Jan;14(1):41-8 - PubMed
  36. Adv Drug Deliv Rev. 2011 Aug 14;63(9):789-808 - PubMed
  37. J Mater Sci Mater Med. 2005 Jun;16(6):515-9 - PubMed
  38. Trends Biotechnol. 1999 Oct;17(10):385-9 - PubMed
  39. Biomater Sci. 2017 Mar 28;5(4):632-647 - PubMed
  40. Methods Mol Biol. 2020;2140:65-92 - PubMed
  41. Arch Pharm Res. 2012 May;35(5):839-50 - PubMed

Publication Types

Grant support