Display options
Share it on

iScience. 2020 Aug 21;23(8):101368. doi: 10.1016/j.isci.2020.101368. Epub 2020 Jul 15.

Succession of Bifidobacterium longum Strains in Response to a Changing Early Life Nutritional Environment Reveals Dietary Substrate Adaptations.

iScience

Magdalena Kujawska, Sabina Leanti La Rosa, Laure C Roger, Phillip B Pope, Lesley Hoyles, Anne L McCartney, Lindsay J Hall

Affiliations

  1. Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK.
  2. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway.
  3. Department of Food & Nutritional Sciences, University of Reading, Reading RG6 6LA, UK.
  4. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Aas, Norway; Faculty of Biosciences, Norwegian University of Life Sciences, 1433 Aas, Norway.
  5. Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK.
  6. Gut Microbes & Health, Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; Chair of Intestinal Microbiome, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany. Electronic address: [email protected].

PMID: 32721872 PMCID: PMC7390879 DOI: 10.1016/j.isci.2020.101368

Abstract

Diet-microbe interactions play a crucial role in modulation of the early life microbiota and infant health. Bifidobacterium dominates the breast-fed infant gut and may persist in individuals during transition from a milk-based to a more diversified diet. Here, we investigated adaptation of Bifidobacterium longum to the changing nutritional environment. Genomic characterization of 75 strains isolated from nine either exclusively breast- or formula-fed (pre-weaning) infants in their first 18 months revealed subspecies- and strain-specific intra-individual genomic diversity with respect to carbohydrate metabolism, which corresponded to different dietary stages. Complementary phenotypic studies indicated strain-specific differences in utilization of human milk oligosaccharides and plant carbohydrates, whereas proteomic profiling identified gene clusters involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum diversity and provide additional insights into possible competitive advantage mechanisms of this Bifidobacterium species and its persistence in a single host.

Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: Dietary Supplement; Microbiology; Microbiome

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

References

  1. Nutrients. 2019 Feb 09;11(2): - PubMed
  2. Front Microbiol. 2017 May 02;8:738 - PubMed
  3. Nat Microbiol. 2019 Mar;4(3):470-479 - PubMed
  4. BMC Microbiol. 2018 Dec 12;18(1):209 - PubMed
  5. Cell Chem Biol. 2017 Apr 20;24(4):515-524.e5 - PubMed
  6. Nat Commun. 2015 Mar 11;6:6528 - PubMed
  7. Trends Microbiol. 2016 Oct;24(10):788-800 - PubMed
  8. Pharmaceuticals (Basel). 2012 Jun 18;5(6):629-42 - PubMed
  9. Appl Microbiol Biotechnol. 2008 Sep;80(3):399-408 - PubMed
  10. Appl Environ Microbiol. 2015 Oct;81(20):7078-87 - PubMed
  11. Sci Rep. 2018 Jan 8;8(1):85 - PubMed
  12. Front Microbiol. 2016 Jun 28;7:979 - PubMed
  13. Genes Dev. 2001 May 1;15(9):1051-4 - PubMed
  14. Science. 2014 Aug 29;345(6200):1048-52 - PubMed
  15. Microbiology (Reading). 2010 Nov;156(Pt 11):3329-3341 - PubMed
  16. Biosci Biotechnol Biochem. 2016;80(4):621-32 - PubMed
  17. Nature. 2006 Dec 21;444(7122):1027-31 - PubMed
  18. Am J Clin Nutr. 2007 May;85(5):1436-7 - PubMed
  19. J Nutr. 2007 Nov;137(11 Suppl):2493S-2502S - PubMed
  20. J Dairy Sci. 2017 Oct;100(10):7825-7833 - PubMed
  21. PLoS One. 2016 Jul 19;11(7):e0159223 - PubMed
  22. Adv Nutr. 2012 May 01;3(3):422S-9S - PubMed
  23. J Mol Microbiol Biotechnol. 2007;12(1-2):9-19 - PubMed
  24. Syst Appl Microbiol. 2015 Jul;38(5):305-14 - PubMed
  25. Appl Environ Microbiol. 2013 Dec;79(23):7518-24 - PubMed
  26. Proteomics. 2011 Jul;11(13):2628-38 - PubMed
  27. BMC Genomics. 2018 Jan 8;19(1):33 - PubMed
  28. Sci Rep. 2016 Oct 19;6:35045 - PubMed
  29. J Appl Microbiol. 2003;95(3):471-8 - PubMed
  30. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18964-9 - PubMed
  31. PLoS Biol. 2007 Jul;5(7):e177 - PubMed
  32. PLoS One. 2016 Jun 30;11(6):e0158498 - PubMed
  33. Appl Environ Microbiol. 2005 Sep;71(9):5501-10 - PubMed
  34. Biosci Biotechnol Biochem. 2013;77(8):1709-14 - PubMed
  35. Front Nutr. 2018 May 30;5:46 - PubMed
  36. Sci Rep. 2016 Dec 08;6:38560 - PubMed
  37. Nat Microbiol. 2018 Feb;3(2):210-219 - PubMed
  38. Nat Rev Immunol. 2011 Dec 09;12(1):9-23 - PubMed
  39. J Appl Microbiol. 2013 Apr;114(4):1132-46 - PubMed
  40. Appl Environ Microbiol. 2012 Feb;78(3):795-803 - PubMed
  41. Microbiology (Reading). 2010 Nov;156(Pt 11):3317-3328 - PubMed
  42. mBio. 2015 Feb 03;6(1): - PubMed
  43. BMC Genomics. 2013 May 10;14:312 - PubMed
  44. Int J Syst Evol Microbiol. 2008 Apr;58(Pt 4):767-72 - PubMed
  45. Biochimie. 2018 May;148:107-115 - PubMed
  46. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5189-98 - PubMed
  47. Evid Rep Technol Assess (Full Rep). 2007 Apr;(153):1-186 - PubMed
  48. PLoS One. 2013 Sep 09;8(9):e73575 - PubMed
  49. Trends Microbiol. 2010 Jul;18(7):298-307 - PubMed
  50. Front Microbiol. 2017 Jan 30;8:95 - PubMed
  51. Cell Host Microbe. 2016 Oct 12;20(4):515-526 - PubMed
  52. Sci Transl Med. 2016 Jun 15;8(343):343ra82 - PubMed
  53. Circ Res. 2017 Mar 31;120(7):1183-1196 - PubMed
  54. Science. 2016 Mar 18;351(6279):1296-302 - PubMed
  55. Cell Host Microbe. 2015 Jun 10;17(6):852 - PubMed
  56. J Mol Biol. 2010 Apr 2;397(3):724-39 - PubMed
  57. Nat Rev Microbiol. 2009 Jan;7(1):61-71 - PubMed
  58. JAMA Pediatr. 2018 Jul 2;172(7):e181161 - PubMed
  59. Science. 2012 Apr 27;336(6080):489-93 - PubMed
  60. Science. 2015 Nov 27;350(6264):1084-9 - PubMed
  61. Nutrients. 2019 Apr 24;11(4): - PubMed
  62. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 - PubMed
  63. Biochem Biophys Res Commun. 2018 Feb 19;496(4):1349-1356 - PubMed
  64. mSystems. 2017 Jan 17;2(1): - PubMed
  65. PLoS One. 2013 Nov 14;8(11):e78331 - PubMed
  66. Sci Rep. 2015 Sep 04;5:13517 - PubMed
  67. Adv Nutr. 2012 May 01;3(3):415S-21S - PubMed
  68. Appl Environ Microbiol. 2011 Oct;77(19):6788-93 - PubMed
  69. PLoS One. 2012;7(5):e36957 - PubMed
  70. Nature. 2019 Oct;574(7776):117-121 - PubMed
  71. Child Obes. 2018 Jul;14(5):327-337 - PubMed
  72. Appl Environ Microbiol. 2015 Nov 20;82(4):980-991 - PubMed
  73. Clin Microbiol Infect. 2012 Jul;18 Suppl 4:12-5 - PubMed
  74. ISME J. 2020 Feb;14(2):635-648 - PubMed
  75. FEMS Microbiol Ecol. 2006 Dec;58(3):563-71 - PubMed
  76. Genes Nutr. 2011 Aug;6(3):285-306 - PubMed
  77. Crit Rev Food Sci Nutr. 2011 Feb;51(2):178-94 - PubMed
  78. Appl Environ Microbiol. 2009 Mar;75(6):1534-45 - PubMed
  79. Pediatrics. 2018 Apr;141(4): - PubMed
  80. Nutr Metab Insights. 2015 Dec 16;8(Suppl 1):1-9 - PubMed
  81. PLoS One. 2015 Aug 14;10(8):e0135658 - PubMed
  82. Sci Rep. 2015 Oct 28;5:15782 - PubMed
  83. AMB Express. 2013 Sep 11;3(1):56 - PubMed

Publication Types

Grant support