Display options
Share it on

FASEB Bioadv. 2020 Jul 03;2(7):387-397. doi: 10.1096/fba.2020-00017. eCollection 2020 Jul.

Muscle-specific sirtuin1 gain-of-function ameliorates skeletal muscle atrophy in a pre-clinical mouse model of cerebral ischemic stroke.

FASEB bioAdvances

Kiril Tuntevski, Ameena Hajira, Austin Nichols, Stephen E Alway, Junaith S Mohamed

Affiliations

  1. Department of Human Performance West Virginia University School of Medicine Morgantown WV USA.
  2. Laboratory of Muscle Biology and Sarcopenia Department of Physical Therapy College of Health Professions University of Tennessee Health Science Center Memphis TN USA.
  3. Center for Muscle, Metabolism and Neuropathology Division of Rehabilitation Sciences College of Health Professions University of Tennessee Health Science Center Memphis TN USA.
  4. Laboratory of Muscle and Nerve Department of Diagnostic and Health Sciences College of Health Professions University of Tennessee Health Science Center Memphis TN USA.

PMID: 32676579 PMCID: PMC7354693 DOI: 10.1096/fba.2020-00017

Abstract

Stroke causes severe long-term disability in patients due to the induction of skeletal muscle atrophy and weakness, but the molecular mechanisms remain elusive. Using a preclinical mouse model of cerebral ischemic stroke, we show that stroke robustly induced atrophy and significantly decreased SirT1 gene expression in the PTA (paralytic tibialis anterior) muscle. Muscle-specific SirT1 gain-of-function mice are resistant to stroke-induced muscle atrophy and this protective effect requires its deacetylase activity. Although SirT1 counteracts the stroke-induced up-regulation of atrogin1, MuRF1 and ZNF216 genes, we found a mechanism that regulates the ZNF216 gene transcription in post-stroke muscle. Stroke increased the expression of the ZNF216 gene in PTA muscle by activating PARP-1, which binds on the ZNF216 promoter. The SirT1 gain-of-function or SirT1 activator, resveratrol, reversed the PARP-1-mediated up-regulation of ZNF216 expression at the promoter level, suggesting a contradicted role for SirT1 and PARP-1 in the regulation of ZNF216 gene. Overall, our study for the first-time demonstrated that (a) stroke causes muscle atrophy, in part, through the SirT1/PARP-1/ZNF216 signaling mechanism; (b) SirT1 can block muscle atrophy in response to different types of atrophic signals via different signaling mechanisms; and (c) SirT1 is a critical regulator of post-stroke muscle mass.

© 2020 The Authors.

Keywords: PARP‐1; SirT1; ZNF216; cerebral ischemic stroke; muscle atrophy

References

  1. Crit Care Med. 2002 May;30(5):1071-82 - PubMed
  2. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13978-82 - PubMed
  3. FASEB J. 2002 Nov;16(13):1697-712 - PubMed
  4. Cell. 2003 Jun 13;113(6):677-83 - PubMed
  5. J Biol Chem. 2010 Sep 17;285(38):29336-47 - PubMed
  6. Lancet. 2012 Dec 15;380(9859):2197-223 - PubMed
  7. J Clin Invest. 1997 Jul 1;100(1):197-203 - PubMed
  8. Cerebrovasc Dis. 2006;21(3):201-7 - PubMed
  9. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4908-12 - PubMed
  10. Cell Metab. 2011 Apr 6;13(4):450-460 - PubMed
  11. Diabetes. 2014 May;63(5):1546-59 - PubMed
  12. J Biol Chem. 2013 Oct 18;288(42):30515-26 - PubMed
  13. EMBO J. 2006 Feb 8;25(3):554-64 - PubMed
  14. PLoS Genet. 2014 Jul 17;10(7):e1004490 - PubMed
  15. J Cachexia Sarcopenia Muscle. 2019 Aug;10(4):929-949 - PubMed
  16. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5 - PubMed
  17. J Clin Invest. 1996 Oct 15;98(8):1703-8 - PubMed
  18. Stroke. 2004 Sep;35(9):2235 - PubMed
  19. Lancet. 2004 Mar 6;363(9411):768-74 - PubMed
  20. J Clin Invest. 1996 Mar 15;97(6):1447-53 - PubMed
  21. N Engl J Med. 2005 Apr 21;352(16):1677-84 - PubMed
  22. Biol Chem. 2018 Jan 26;399(2):179-186 - PubMed
  23. J Biol Chem. 2005 Apr 22;280(16):16456-60 - PubMed
  24. Biochim Biophys Acta. 2015 Dec;1850(12):2530-43 - PubMed
  25. Stroke. 1986 May-Jun;17(3):472-6 - PubMed
  26. Lancet. 2012 Dec 15;380(9859):2095-128 - PubMed
  27. Intensive Care Med. 2004 Jul;30(7):1421-31 - PubMed
  28. J Neurol Sci. 2006 Dec 1;250(1-2):27-32 - PubMed
  29. Science. 2001 Nov 23;294(5547):1704-8 - PubMed
  30. Anesthesiology. 2008 Feb;108(2):261-8 - PubMed
  31. Stroke. 2014 Dec;45(12):3675-83 - PubMed
  32. Ann Neurol. 2003 Sep;54(3):330-42 - PubMed
  33. Mol Cancer Res. 2014 Aug;12(8):1069-80 - PubMed
  34. J Biol Chem. 2013 Aug 23;288(34):24560-8 - PubMed
  35. FASEB J. 2010 Sep;24(9):3330-40 - PubMed
  36. Neurorehabil Neural Repair. 2011 Nov-Dec;25(9):865-72 - PubMed
  37. Biomed Biochim Acta. 1991;50(4-6):347-56 - PubMed
  38. Aging (Albany NY). 2014 Oct;6(10):820-34 - PubMed
  39. Nat Clin Pract Neurol. 2008 Feb;4(2):76-85 - PubMed
  40. Stroke. 2015 Jun;46(6):1673-80 - PubMed
  41. Am J Physiol Renal Physiol. 2005 Feb;288(2):F387-98 - PubMed
  42. Am J Physiol. 1993 Apr;264(4 Pt 1):E668-76 - PubMed
  43. Cell Metab. 2011 Apr 6;13(4):461-468 - PubMed

Publication Types

Grant support