Display options
Share it on

Nat Rev Cardiol. 2020 Dec;17(12):773-789. doi: 10.1038/s41569-020-0403-y. Epub 2020 Jul 03.

Myocardial ischaemia-reperfusion injury and cardioprotection in perspective.

Nature reviews. Cardiology

Gerd Heusch

Affiliations

  1. Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany. [email protected].

PMID: 32620851 DOI: 10.1038/s41569-020-0403-y

Abstract

Despite the increasing use and success of interventional coronary reperfusion strategies, morbidity and mortality from acute myocardial infarction are still substantial. Myocardial infarct size is a major determinant of prognosis in these patients. Therefore, cardioprotective strategies aim to reduce infarct size. However, a perplexing gap exists between the many preclinical studies reporting infarct size reduction with mechanical and pharmacological interventions and the poor translation into better clinical outcomes in patients. This Review revisits the pathophysiology of myocardial ischaemia-reperfusion injury, including the role of autophagy and forms of cell death such as necrosis, apoptosis, necroptosis and pyroptosis. Other cellular compartments in addition to cardiomyocytes are addressed, notably the coronary microcirculation. Preclinical and clinical research developments in mechanical and pharmacological approaches to induce cardioprotection, and their signal transduction pathways, are discussed. Additive cardioprotective interventions are advocated. For clinical translation into treatments for patients with acute myocardial infarction, who typically are of advanced age, have comorbidities and are receiving several medications, not only infarct size reduction but also attenuation of coronary microvascular obstruction, as well as longer-term targets including infarct repair and reverse remodelling, must be considered to improve patient outcomes. Future clinical trials must focus on patients who really need adjunct cardioprotection, that is, those with severe haemodynamic alterations.

References

  1. Heusch, G. Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381, 166–175 (2013). - PubMed
  2. Heusch, G. Myocardial ischemia: lack of coronary blood flow, myocardial oxygen supply-demand imbalance, or what? Am. J. Physiol. Heart Circ. Physiol. 316, H1439–H1446 (2019). - PubMed
  3. Ibanez, B. et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2017). - PubMed
  4. Ginks, W. R. et al. Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J. Clin. Invest. 51, 2717–2723 (1972). - PubMed
  5. Ibanez, B., Heusch, G., Ovize, M. & Van de Werf, F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 65, 1454–1471 (2015). - PubMed
  6. Piper, H. M., García-Dorado, D. & Ovize, M. A fresh look at reperfusion injury. Cardiovasc. Res. 38, 291–300 (1998). - PubMed
  7. Heusch, G. Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr. Physiol. 5, 1123–1145 (2015). - PubMed
  8. Hausenloy, D. J. et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur. Heart J. 38, 935–941 (2017). - PubMed
  9. Hausenloy, D. J. & Yellon, D. M. Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100 (2013). - PubMed
  10. Moran, A. E. et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 129, 1493–1501 (2014). - PubMed
  11. Roe, M. T. et al. Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. J. Am. Coll. Cardiol. 56, 254–263 (2010). - PubMed
  12. Cung, T. T. et al. Cyclosporine before PCI in patients with acute myocardial infarction. N. Engl. J. Med. 373, 1021–1103 (2015). - PubMed
  13. Hausenloy, D. J. et al. Effect of remote ischemic conditioning on clinical outcomes at 12 months in acute myocardial infarction patients: the CONDI-2/ERIC-PPCI trial. Lancet 394, 1415–1424 (2019). - PubMed
  14. Jernberg, T. et al. Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction. JAMA 305, 1677–1684 (2011). - PubMed
  15. Heusch, G. & Gersh, B. J. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur. Heart J. 38, 774–784 (2017). - PubMed
  16. Stone, G. W. et al. Relationship between infarct size and outcomes following primary PCI: patient-level analysis from 10 randomized trials. J. Am. Coll. Cardiol. 67, 1674–1683 (2016). - PubMed
  17. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986). - PubMed
  18. Hausenloy, D. J. et al. Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res. Cardiol. 111, 70 (2016). - PubMed
  19. Heusch, G. & Rassaf, T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ. Res. 119, 676–695 (2016). - PubMed
  20. Heusch, G. Critical issues for the translation of cardioprotection. Circ. Res. 120, 1477–1486 (2017). - PubMed
  21. Gaspar, A. et al. Randomized controlled trial of remote ischaemic conditioning in ST-elevation myocardial infarction as adjuvant to primary angioplasty (RIC-STEMI). Basic Res. Cardiol. 113, 14 (2018). - PubMed
  22. Heusch, G. 25 years of remote ischemic conditioning: from laboratory curiosity to clinical outcome. Basic Res. Cardiol. 113, 15 (2018). - PubMed
  23. Kloner, R. A. et al. New and revisited approaches to preserving the reperfused myocardium. Nat. Rev. Cardiol. 14, 679–693 (2017). - PubMed
  24. Jennings, R. B. & Reimer, K. A. Lethal myocardial ischemic injury. Am. J. Pathol. 102, 241–255 (1981). - PubMed
  25. Przyklenk, K. Lethal myocardial “reperfusion injury”: the opinions of good men. J. Thromb. Thrombolysis 4, 5–6 (1997). - PubMed
  26. Zhao, Z.-Q. et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol 285, H579–H588 (2003). - PubMed
  27. Tissier, R., Ghaleh, B., Cohen, M. V., Downey, J. M. & Berdeaux, A. Myocardial protection with mild hypothermia. Cardiovasc. Res. 94, 217–225 (2012). - PubMed
  28. Heusch, G. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc. Interv. 10, 1521–1522 (2017). - PubMed
  29. Kleinbongard, P., Amanakis, G., Skyschally, A. & Heusch, G. Reflection of cardioprotection by remote ischemic perconditioning in attenuated ST-segment elevation during ongoing coronary occlusion in pigs: evidence for cardioprotection from ischemic injury. Circ. Res. 122, 1102–1108 (2018). - PubMed
  30. Garcia-Ruiz, J. M. et al. Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. J. Am. Coll. Cardiol. 67, 2093–2104 (2016). - PubMed
  31. Bøtker, H. E. et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res. Cardiol. 113, 39 (2018). - PubMed
  32. Reimer, K. A., Lowe, J. E., Rasmussen, M. M. & Jennings, R. B. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56, 786–794 (1977). - PubMed
  33. Reimer, K. A. & Jennings, R. B. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 40, 633–644 (1979). - PubMed
  34. Mishra, P. K. et al. Guidelines for evaluating myocardial cell death. Am. J. Physiol. Heart Circ. Physiol. 317, H891–H922 (2019). - PubMed
  35. Tani, M. & Neely, J. R. Role of intracellular Na - PubMed
  36. Ladilov, Y. V., Siegmund, B. & Piper, H. M. Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na - PubMed
  37. Piper, H. M., Meuter, K. & Schäfer, C. Cellular mechanisms of ischemia–reperfusion injury. Ann. Thorac. Surg. 75, S644–S648 (2003). - PubMed
  38. Schlüter, K. D., Jakob, G., Ruiz-Meana, G. J. M., Garcia-Dorado, D. & Piper, H. M. Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am. J. Physiol. Heart Circ. Physiol. 271, H428–H434 (1996). - PubMed
  39. Inserte, J., Hernando, V. & Garcia-Dorado, D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 96, 23–31 (2012). - PubMed
  40. Davidson, S. M. et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J. Cell Mol. Med. 24, 3795–3806 (2020). - PubMed
  41. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000). - PubMed
  42. Bernardi, P., Rasola, A., Forte, M. & Lippe, G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155 (2015). - PubMed
  43. Bernardi, P. & Di Lisa, F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J. Mol. Cell Cardiol. 78c, 100–106 (2015). - PubMed
  44. Zhou, W. & Yuan, J. SnapShot: necroptosis. Cell 158, 464–464.e1 (2014). - PubMed
  45. Oerlemans, M. I. et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Res. Cardiol. 107, 270 (2012). - PubMed
  46. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011). - PubMed
  47. Audia, J. P. et al. Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Res. Cardiol. 113, 32 (2018). - PubMed
  48. Gottlieb, R. A. & Mentzer, R. M. Jr. Autophagy: an affair of the heart. Heart Fail. Rev. 18, 575–584 (2013). - PubMed
  49. Dong, Y., Undyala, V. V., Gottlieb, R. A., Mentzer, R. M. Jr & Przyklenk, K. Autophagy: definition, molecular machinery, and potential role in myocardial ischemia–reperfusion injury. J. Cardiovasc. Pharmacol. Ther. 15, 220–230 (2010). - PubMed
  50. Sala-Mercado, J. A. et al. Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia–reperfusion injury. Circulation 122, S179–S184 (2010). - PubMed
  51. Heusch, G., Schulz, R., Baumgart, D., Haude, M. & Erbel, R. Coronary microembolization. Prog. Cardiovasc. Dis. 44, 217–230 (2001). - PubMed
  52. Koshinuma, S., Miyamae, M., Kaneda, K., Kotani, J. & Figueredo, V. M. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia–reperfusion injury. J. Anesth. 28, 235–241 (2014). - PubMed
  53. Heusch, G. et al. The coronary circulation in cardioprotection: more than just one confounder. Cardiovasc. Res. 94, 237–245 (2012). - PubMed
  54. Heusch, G. The coronary circulation as a target of cardioprotection. Circ. Res. 118, 1643–1658 (2016). - PubMed
  55. Heusch, G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res. Cardiol. 114, 45 (2019). - PubMed
  56. Niccoli, G. et al. Optimized treatment of ST-elevation myocardial infarction: the unmet need to target coronary microvascular obstruction as primary treatment goal to further improve prognosis. Circ. Res. 125, 245–258 (2019). - PubMed
  57. Heusch, G. et al. Coronary microembolization: from bedside to bench and back to bedside. Circulation 120, 1822–1836 (2009). - PubMed
  58. Kleinbongard, P. et al. Vasoconstrictor potential of coronary aspirate from patients undergoing stenting of saphenous vein aortocoronary bypass grafts and its pharmacological attenuation. Circ. Res. 108, 344–352 (2011). - PubMed
  59. Kleinbongard, P. et al. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: more endothelin but less particulate debris. Am. J. Physiol. Heart Circ. Physiol. 305, H1222–H1229 (2013). - PubMed
  60. Bolli, R., Triana, J. F. & Jeroudi, M. O. Prolonged impairment of coronary vasodilation after reversible ischemia. Circ. Res. 67, 332–343 (1990). - PubMed
  61. Ehring, T. et al. Cholinergic and α-adrenergic coronary vasomotion with increasing ischemia–reperfusion injury. Am. J. Physiol. 268, H886–H894 (1995). - PubMed
  62. Sheridan, F. M., Dauber, I. M., McMurtry, I. F., Lesnefsky, E. J. & Horwitz, L. D. Role of leukocytes in coronary vascular endothelial injury due to ischemia and reperfusion. Circ. Res. 69, 1566–1574 (1991). - PubMed
  63. Barrabes, J. A. et al. Antagonism of selectin function attenuates microvascular platelet deposition and platelet-mediated myocardial injury after transient ischemia. J. Am. Coll. Cardiol. 45, 293–299 (2005). - PubMed
  64. Driesen, R. B. et al. Histological correlate of a cardiac magnetic resonance imaged microvascular obstruction in a porcine model of ischemia–reperfusion. Cardiovasc. Pathol. 21, 129–131 (2011). - PubMed
  65. Dauber, I. M. et al. Functional coronary microvascular injury evident as increased permeability due to brief ischemia and reperfusion. Circ. Res. 66, 986–998 (1990). - PubMed
  66. Garcia-Dorado, D., Andres-Villarreal, M., Ruiz-Meana, M., Inserte, J. & Barba, I. Myocardial edema: a translational view. J. Mol. Cell Cardiol. 52, 931–939 (2012). - PubMed
  67. Krug, A., du Mesnil de Rochemont, W. & Korb, G. Blood supply of the myocardium after temporary coronary occlusion. Circ. Res. 19, 57–62 (1966). - PubMed
  68. Kloner, R. A., Ganote, C. E. & Jennings, R. B. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J. Clin. Invest. 54, 1496–1508 (1974). - PubMed
  69. Higginson, L. A. et al. Determinants of myocardial hemorrhage after coronary reperfusion in the anesthetized dog. Circulation 65, 62–69 (1982). - PubMed
  70. Robbers, L. F. et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur. Heart J. 34, 2346–2353 (2013). - PubMed
  71. Hori, M. et al. Role of oxygen-derived free radicals in myocardial edema and ischemia in coronary microvascular embolization. Circulation 84, 828–840 (1991). - PubMed
  72. de Waha, S. et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 38, 3502–3510 (2017). - PubMed
  73. Murry, C. E., Richard, V. J., Jennings, R. B. & Reimer, K. A. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 260, H796–H804 (1991). - PubMed
  74. Marber, M. S., Latchman, D. S., Walker, J. M. & Yellon, D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88, 1264–1272 (1993). - PubMed
  75. Bolli, R. The late phase of preconditioning. Circ. Res. 87, 972–983 (2000). - PubMed
  76. Heusch, G. Nitroglycerin and delayed preconditioning in humans. Yet another new mechanism for an old drug? Circulation 103, 2876–2878 (2001). - PubMed
  77. Rezkalla, S. H. & Kloner, R. A. Ischemic preconditioning and preinfarction angina in the clinical arena. Nat. Clin. Pract. Cardiovasc. Med. 1, 96–102 (2004). - PubMed
  78. Deutsch, E. et al. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation 82, 2044–2051 (1990). - PubMed
  79. Tomai, F. et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K - PubMed
  80. Yellon, D. M., Alkhulaifi, A. M. & Pugsley, W. B. Preconditioning the human myocardium. Lancet 342, 276–277 (1993). - PubMed
  81. Jenkins, D. P. et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77, 314–318 (1997). - PubMed
  82. Staat, P. et al. Postconditioning the human heart. Circulation 112, 2143–2148 (2005). - PubMed
  83. Thuny, F. et al. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 59, 2175–2181 (2012). - PubMed
  84. Mewton, N. et al. Postconditioning attenuates no-reflow in STEMI patients. Basic Res. Cardiol. 108, 383 (2013). - PubMed
  85. Traverse, J. H. et al. NHLBI-sponsored randomized trial of postconditioning during primary percutaneous coronary intervention for ST-elevation myocardial infarction. Circ. Res. 124, 769–778 (2019). - PubMed
  86. Thibault, H. et al. Long-term benefit of postconditioning. Circulation 117, 1037–1044 (2008). - PubMed
  87. Ma, X. J., Zhang, X. H., Li, C. M. & Luo, M. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand. Cardiovasc. J. 40, 327–333 (2006). - PubMed
  88. Yang, X. C. et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J. Invasive Cardiol. 19, 424–430 (2007). - PubMed
  89. Laskey, W. K., Yoon, S., Calzada, N. & Ricciardi, M. J. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter. Cardiovasc. Interv. 72, 212–220 (2008). - PubMed
  90. Zhao, W. S. et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis 14, 1204–1211 (2009). - PubMed
  91. Lonborg, J. et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 3, 34–41 (2010). - PubMed
  92. Sörensson, P. et al. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart 96, 1710–1715 (2010). - PubMed
  93. Xue, F. et al. Postconditioning the human heart in percutaneous coronary intervention. Clin. Cardiol. 33, 439–444 (2010). - PubMed
  94. Garcia, S. et al. Long-term follow-up of patients undergoing postconditioning during ST-elevation myocardial infarction. J. Cardiovasc. Transl. Res. 4, 92–98 (2011). - PubMed
  95. Liu, T. K., Mishra, A. K. & Ding, F. X. Protective effect of ischemia postconditioning on reperfusion injury in patients with ST-segment elevation acute myocardial infarction [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 39, 35–39 (2011). - PubMed
  96. Freixa, X. et al. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur. Heart J. 33, 103–112 (2012). - PubMed
  97. Tarantini, G. et al. Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int. J. Cardiol. 162, 33–38 (2012). - PubMed
  98. Ugata, Y., Nakamura, T., Taniguchi, Y., Ako, J. & Momomura, S. Effect of postconditioning in patients with ST-elevation acute myocardial infarction. Cardiovasc. Interv. Ther. 27, 14–18 (2012). - PubMed
  99. Dwyer, N. B. et al. No cardioprotective benefit of ischemic postconditioning in patients with ST-segment elevation myocardial infarction. J. Interv. Cardiol. 26, 482–490 (2013). - PubMed
  100. Elzbieciak, M. et al. Effect of postconditioning on infarction size, adverse left ventricular remodeling, and improvement in left ventricular systolic function in patients with first anterior ST segment elevation myocardial infarction. Pol. Arch. Med. Wewn. 123, 268–276 (2013). - PubMed
  101. Hahn, J. Y. et al. Ischemic postconditioning during primary percutaneous coronary intervention: the POST randomized trial. Circulation 128, 1889–1896 (2013). - PubMed
  102. Liu, S. H., Huo, Y. E., Yin, B. Y., Li, X. H. & Wang, Y. F. Ischemic postconditioning may increase serum fetuin-A level in patients with acute ST-segment elevation myocardial infarction undergoing percutaneous intervention. Clin. Lab. 59, 59–64 (2013). - PubMed
  103. Araszkiewicz, A. et al. Postconditioning reduces enzymatic infarct size and improves microvascular reperfusion in patients with ST-segment elevation myocardial infarction. Cardiology 129, 250–257 (2014). - PubMed
  104. Bodi, V. et al. Effect of ischemic postconditioning on microvascular obstruction in reperfused myocardial infarction. Results of a randomized study in patients and of an experimental model in swine. Int. J. Cardiol. 175, 138–146 (2014). - PubMed
  105. Dong, M. et al. The beneficial effects of postconditioning on no-reflow phenomenon after percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. J. Thromb. Thrombolysis 38, 208–214 (2014). - PubMed
  106. Limalanathan, S. et al. Effect of ischemic postconditioning on infarct size in patients with ST-elevation myocardial infarction treated by primary PCI: results of the POSTEMI (Postconditioning in ST-Elevation Myocardial Infarction) randomized trial. J. Am. Heart Assoc. 3, e000679 (2014). - PubMed
  107. Luz, A. et al. Lack of benefit of ischemic postconditioning after routine thrombus aspiration during reperfusion: immediate and midterm results. J. Cardiovasc. Pharmacol. Ther. 20, 523–531 (2015). - PubMed
  108. Yetgin, T. et al. Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction: real-world postconditioning. Basic Res. Cardiol. 109, 403 (2014). - PubMed
  109. Eitel, I. et al. Cardioprotection by combined intrahospital remote ischaemic perconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur. Heart J. 36, 3049–3057 (2015). - PubMed
  110. Kim, E. K. et al. Effect of ischemic postconditioning on myocardial salvage in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the POST randomized trial. Int. J. Cardiovasc. Imaging 31, 629–637 (2015). - PubMed
  111. Engstrøm, T. et al. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a randomized clinical trial. JAMA Cardiol. 2, 490–497 (2017). - PubMed
  112. Araszkiewicz, A. et al. Ischemic postconditioning reduces infarct size and microvascular obstruction zone in acute ST-elevation myocardial infarction — a randomized study. Postepy Kardiol Interwencyjnej 15, 292–300 (2019). - PubMed
  113. Mukherjee, P. & Jain, M. Effect of ischemic postconditioning during primary percutaneous coronary intervention for patients with ST-segment elevation myocardial infarction: a single-center cross-sectional study. Ann. Card. Anaesth. 22, 347–352 (2019). - PubMed
  114. Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A. & Whittaker, P. Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87, 893–899 (1993). - PubMed
  115. Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A. & Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 65, 177–195 (2015). - PubMed
  116. Kleinbongard, P., Skyschally, A. & Heusch, G. Cardioprotection by remote ischemic conditioning and its signal transduction. Pflugers Arch. 469, 159–181 (2017). - PubMed
  117. Bøtker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010). - PubMed
  118. Sloth, A. D. et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischaemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur. Heart J. 35, 168–175 (2014). - PubMed
  119. Munk, K. et al. Remote ischemic conditioning in patients with myocardial infarction treated with primary angioplasty: impact on left ventricular function assessed by comprehensive echocardiography and gated single-photon emission CT. Circ. Cardiovasc. Imaging 3, 656–662 (2010). - PubMed
  120. Rentoukas, I. et al. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention: enhancement by opioid action. J. Am. Coll. Cardiol. Cardiovasc. Interv. 3, 49–55 (2010). - PubMed
  121. Crimi, G. et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 1055–1063 (2013). - PubMed
  122. Prunier, F. et al. The RIPOST-MI study, assessing remote ischemic perconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res. Cardiol. 109, 400 (2014). - PubMed
  123. White, S. K. et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. Cardiovasc. Interv. 8, 178–188 (2015). - PubMed
  124. Yamanaka, T. et al. Remote ischemic preconditioning reduces contrast-induced acute kidney injury in patients with ST-elevation myocardial infarction: a randomized controlled trial. Int. J. Cardiol. 178, 136–141 (2015). - PubMed
  125. Yellon, D. M. et al. Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J. Am. Coll. Cardiol. 65, 2764–2765 (2015). - PubMed
  126. Liu, Z., Zhao, L., Hong, D. & Gao, J. Remote ischaemic preconditioning reduces myocardial ischaemic reperfusion injury in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Acta Cardiol. 71, 596–603 (2016). - PubMed
  127. Verouhis, D. et al. Effect of remote ischemic conditioning on infarct size in patients with anterior ST-elevation myocardial infarction. Am. Heart J. 181, 66–73 (2016). - PubMed
  128. Elbadawi, A. et al. Impact of remote ischemic postconditioning during primary percutaneous coronary intervention on left ventricular remodeling after anterior wall ST-segment elevation myocardial infarction: a single-center experience. Int. J. Angiol. 26, 241–248 (2017). - PubMed
  129. Ladejobi, A. et al. Association of remote ischemic peri-conditioning with reduced incidence of clinical heart failure after primary percutaneous coronary intervention. Cardiovasc. Revasc. Med. 18, 105–109 (2017). - PubMed
  130. Cao, B., Wang, H., Zhang, C., Xia, M. & Yang, X. Remote ischemic postconditioning (RIPC) of the upper arm results in protection from cardiac ischemia–reperfusion injury following primary percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). Med. Sci. Monit. 24, 1017–1026 (2018). - PubMed
  131. Ghaffari, S., Pourafkari, L., Manzouri, S. & Nader, N. D. Effect of remote ischemic postconditioning during thrombolysis in STEMI. Herz 43, 161–168 (2018). - PubMed
  132. Cheskes, S. et al. Field implementation of remote ischemic conditioning in ST-elevation myocardial infarction: the FIRST study. Can. J. Cardiol. https://doi.org/10.1016/j.cjca.2019.11.029 (2020). - PubMed
  133. Thourani, V. H. et al. Ischemic preconditioning attenuates postischemic coronary artery endothelial dysfunction in a model of minimally invasive direct coronary artery bypass. J. Thorac. Cardiovasc. Surg. 117, 383–389 (1999). - PubMed
  134. Tofukuji, M. et al. Effects of ischemic preconditioning on myocardial perfusion, function, and microvascular regulation. Circulation 98, II-197–II-205 (1998). - PubMed
  135. Kurzelewski, M., Czarnowska, E., Maczewski, M. & Beresewicz, A. Effect of ischemic preconditioning on endothelial dysfunction and granulocyte adhesion in isolated guinea-pig hearts subjected to ischemia/reperfusion. J. Physiol. Pharmacol. 50, 617–628 (1999). - PubMed
  136. Zhao, J. L., Yang, Y. J., You, S. J., Cui, C. J. & Gao, R. L. Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc. Res. 73, 137–142 (2007). - PubMed
  137. Skyschally, A., Amanakis, G., Neuhauser, M., Kleinbongard, P. & Heusch, G. Impact of electrical defibrillation on infarct size and no-reflow in pigs subjected to myocardial ischemia–reperfusion without and with ischemic conditioning. Am. J. Physiol. Heart Circ. Physiol. 313, H871–H878 (2017). - PubMed
  138. Liu, G. S. et al. Protection against infarction afforded by preconditioning is mediated by A - PubMed
  139. Ytrehus, K., Liu, Y. & Downey, J. M. Preconditioning protects ischemic rabbit heart by protein C activation. Am. J. Physiol. Heart Circ. Physiol. 266, H1145–H1152 (1994). - PubMed
  140. Schulz, R., Cohen, M., Behrends, M., Downey, J. M. & Heusch, G. Signal transduction of ischemic preconditioning. Cardiovasc. Res. 52, 181–198 (2001). - PubMed
  141. Heusch, G., Boengler, K. & Schulz, R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118, 1915–1919 (2008). - PubMed
  142. Heusch, G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 116, 674–699 (2015). - PubMed
  143. Cohen, M. V. & Downey, J. M. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol. 172, 1913–1932 (2015). - PubMed
  144. Schulz, R., Rose, J., Post, H. & Heusch, G. Involvement of endogenous adenosine in ischaemic preconditioning in swine. Pflügers Arch. 430, 273–282 (1995). - PubMed
  145. Goto, M. et al. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res. 77, 611–621 (1995). - PubMed
  146. Schulz, R., Post, H., Vahlhaus, C. & Heusch, G. Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98, 1022–1029 (1998). - PubMed
  147. Cohen, M. V., Yang, X.-M., Liu, G. S., Heusch, G. & Downey, J. M. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K - PubMed
  148. Schultz, J. E. L., Rose, E., Yao, Z. & Gross, G. J. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am. J. Physiol. 268, H2157–H2161 (1995). - PubMed
  149. Schulz, R., Gres, P. & Heusch, G. Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am. J. Physiol. Heart Circ. Physiol. 280, H2175–H2181 (2001). - PubMed
  150. Smith, R. M., Suleman, N., McCarthy, J. & Sack, M. N. Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFα gene. Cardiovasc. Res. 55, 553–560 (2002). - PubMed
  151. Dawn, B. et al. Tumor necrosis factor-α does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J. Mol. Cell Cardiol. 37, 51–61 (2004). - PubMed
  152. Skyschally, A. et al. Bidirectional role of tumor necrosis factor-α in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ. Res. 100, 140–146 (2007). - PubMed
  153. Gysembergh, A. et al. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am. J. Physiol. Heart Circ. Physiol. 274, H955–H964 (1998). - PubMed
  154. Cohen, M. V. & Downey, J. M. Adenosine: trigger and mediator of cardioprotection. Basic Res. Cardiol. 103, 203–215 (2008). - PubMed
  155. Schulz, R., Kelm, M. & Heusch, G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 61, 402–413 (2004). - PubMed
  156. Rossello, X. & Yellon, D. M. The RISK pathway and beyond. Basic Res. Cardiol. 113, 2 (2017). - PubMed
  157. Hadebe, N., Cour, M. & Lecour, S. The SAFE pathway for cardioprotection: is this a promising target? Basic Res. Cardiol. 113, 9 (2018). - PubMed
  158. Simkhovich, B. Z., Przyklenk, K. & Kloner, R. A. Role of protein kinase C in ischemic “conditioning”: from first evidence to current perspectives. J. Cardiovasc. Pharmacol. Ther. 18, 525–532 (2013). - PubMed
  159. Costa, A. D. T. et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 97, 329–336 (2005). - PubMed
  160. Inserte, J. et al. cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J. Mol. Cell Cardiol. 50, 903–909 (2011). - PubMed
  161. Inserte, J. et al. Delayed phospholamban phosphorylation in post-conditioned heart favours Ca - PubMed
  162. Juhaszova, M. et al. Role of glycogen synthase kinase-3beta in cardioprotection. Circ. Res. 104, 1240–1252 (2009). - PubMed
  163. Gomez, L., Paillard, M., Thibault, H., Derumeaux, G. & Ovize, M. Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117, 2761–2768 (2008). - PubMed
  164. Nishino, Y. et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ. Res. 103, 307–314 (2008). - PubMed
  165. Nikolaou, P. E. et al. Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovasc. Res. 115, 1228–1243 (2019). - PubMed
  166. Boengler, K., Lochnit, G. & Schulz, R. Mitochondria “THE” target of myocardial conditioning. Am. J. Physiol. Heart Circ. Physiol. 315, H1215–H1231 (2018). - PubMed
  167. Heusch, G., Boengler, K. & Schulz, R. Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res. Cardiol. 105, 151–154 (2010). - PubMed
  168. Hausenloy, D., Wynne, A., Duchen, M. & Yellon, D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109, 1714–1717 (2004). - PubMed
  169. Liu, Y., Sato, T., O’Rourke, B. & Marban, E. Mitochondrial ATP-dependent potassium channels. Novel effectors of cardioprotection? Circulation 97, 2463–2469 (1998). - PubMed
  170. Boengler, K. et al. Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc. Res. 67, 234–244 (2005). - PubMed
  171. Boengler, K., Ungefug, E., Heusch, G., Leybaert, L. & Schulz, R. Connexin 43 impacts on mitochondrial potassium uptake. Front. Pharmacol. 4, 73 (2013). - PubMed
  172. Heinzel, F. R. et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ. Res. 97, 583–586 (2005). - PubMed
  173. Pain, T. et al. Opening of mitochondrial K - PubMed
  174. Wegrzyn, J. et al. Function of mitochondrial Stat3 in cellular respiration. Science 323, 793–797 (2009). - PubMed
  175. Heusch, G., Musiolik, J., Gedik, N. & Skyschally, A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ. Res. 109, 1302–1308 (2011). - PubMed
  176. Heusch, G. et al. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans. Circ. Res. 110, 111–115 (2012). - PubMed
  177. Kohr, M. J. et al. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ. Res. 108, 418–426 (2011). - PubMed
  178. Hernando, V. et al. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J. Mol. Cell Cardiol. 49, 271–279 (2010). - PubMed
  179. Xuan, Y.-T., Guo, Y., Han, H., Zhu, Y. & Bolli, R. An essential role of the JAK–STAT pathway in ischemic preconditioning. Proc. Natl Acad. Sci. USA 98, 9050–9055 (2001). - PubMed
  180. Basalay, M. V., Davidson, S. M., Gourine, A. V. & Yellon, D. M. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res. Cardiol. 113, 25 (2018). - PubMed
  181. Steensrud, T. et al. Pretreatment with the nitric oxide donor SNAP or nerve transection blocks humoral preconditioning by remote limb ischemia or intra-arterial adenosine. Am. J. Physiol. Heart Circ. Physiol. 299, H1598–H1603 (2010). - PubMed
  182. Merlocco, A. C. et al. Transcutaneous electrical nerve stimulation as a novel method of remote preconditioning: in vitro validation in an animal model and first human observations. Basic Res. Cardiol. 109, 406 (2014). - PubMed
  183. Skyschally, A. et al. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by reperfusion injury salvage kinase and survival activating factor enhancement pathways. Circ. Res. 117, 279–288 (2015). - PubMed
  184. Gedik, N. et al. Potential humoral mediators of remote ischemic preconditioning in patients undergoing surgical coronary revascularization. Sci. Rep. 7, 12660 (2017). - PubMed
  185. Maciel, L., Oliveira, D. F., Verissimo da Costa, G. C., Bisch, P. M. & Nascimento, J. H. M. Cardioprotection by transfer of coronary effluent from ischemic preconditioned rat hearts: identification of cardioprotective humoral factors. Basic Res. Cardiol. 112, 52 (2016). - PubMed
  186. Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018). - PubMed
  187. Rohailla, S. et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS ONE 9, e111291 (2014). - PubMed
  188. Kleinbongard, P. & Heusch, G. Extracellular signalling molecules in the ischaemic/reperfused heart — druggable and translatable for cardioprotection? Br. J. Pharmacol. 172, 2010–2025 (2015). - PubMed
  189. Gersh, B. J., Stone, G. W., White, H. D. & Holmes, D. R. Jr. Pharmacological facilitation of primary percutaneous coronary intervention for acute myocardial infarction: is the slope of the curve the shape of the future? JAMA 293, 979–986 (2005). - PubMed
  190. Homeister, J. W., Hoff, P. T., Fletcher, D. D. & Lucchesi, B. R. Combined adenosine and lidocaine administration limits myocardial reperfusion injury. Circulation 82, 595–608 (1990). - PubMed
  191. Vander Heide, R. S. & Reimer, K. A. Effect of adenosine therapy at reperfusion and myocardial infarct size in dogs. Cardiovasc. Res. 31, 711–718 (1996). - PubMed
  192. Baxter, G. F. et al. Adenosine A - PubMed
  193. Bulluck, H., Sirker, A., Loke, Y. K., Garcia-Dorado, D. & Hausenloy, D. J. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: an updated meta-analysis of randomized controlled trials. Int. J. Cardiol. 202, 228–237 (2016). - PubMed
  194. Duranski, M. R. et al. Cytoprotective effects of nitrite during in vivo ischemia–reperfusion of the heart and liver. J. Clin. Invest. 115, 1232–1240 (2005). - PubMed
  195. Lefer, D. et al. Sodium nitrite fails to limit myocardial infarct size: results from the CAESAR cardioprotection consortium [abstract LB645]. FASEB J. 28 (2014). - PubMed
  196. Siddiqi, N. et al. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur. Heart J. 35, 1255–1262 (2014). - PubMed
  197. Jones, D. A. et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ. Res. 116, 437–447 (2015). - PubMed
  198. Mayr, M. et al. Loss of PKC-δ alters cardiac metabolism. Am. J. Physiol. Heart Circ. Physiol. 287, H937–H945 (2004). - PubMed
  199. Chen, L. et al. Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proc. Natl Acad. Sci. USA 98, 11114–11119 (2001). - PubMed
  200. Fryer, R. M. et al. PKC-δ inhibition does not block preconditioning-induced preservation in mitochondrial ATP synthesis and infarct size reduction in rats. Basic Res. Cardiol. 97, 47–54 (2002). - PubMed
  201. Lincoff, A. M. et al. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. Eur. Heart J. 35, 2516–2523 (2014). - PubMed
  202. Argaud, L. et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J. Mol. Cell Cardiol. 38, 367–374 (2005). - PubMed
  203. Boengler, K., Hilfiker-Kleiner, D., Heusch, G. & Schulz, R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res. Cardiol. 105, 771–785 (2010). - PubMed
  204. Skyschally, A., Schulz, R. & Heusch, G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc. Drugs Ther. 24, 85–87 (2010). - PubMed
  205. Lie, R. H. et al. Post-conditioning with cyclosporine A fails to reduce the infarct size in an in vivo porcine model. Acta Anaesthesiol. Scand. 54, 804–813 (2010). - PubMed
  206. Karlsson, L. O., Bergh, N. & Grip, L. Cyclosporine A, 2.5mg/kg, does not reduce myocardial infarct size in a porcine model of ischemia and reperfusion. J. Cardiovasc. Pharmacol. Ther. 17, 159–163 (2012). - PubMed
  207. Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481 (2008). - PubMed
  208. Ottani, F. et al. Cyclosporine A in reperfused myocardial infarction. The multicenter, controlled, open-label CYCLE trial. J. Am. Coll. Cardiol. 67, 365–374 (2016). - PubMed
  209. Botker, H. E., Cabrera-Fuentes, H. A., Ruiz-Meana, M., Heusch, G. & Ovize, M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J. Cell Mol. Med. 24, 2717–2729 (2020). - PubMed
  210. Ibanez, B. et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 115, 2909–2916 (2007). - PubMed
  211. Ibanez, B. et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation 128, 1495–1503 (2013). - PubMed
  212. Garcia-Prieto, J. et al. Neutrophil stunning by metoprolol reduces infarct size. Nat. Commun. 8, 14780 (2017). - PubMed
  213. Roolvink, V. et al. Early administration of intravenous beta blockers in patients with ST-elevation myocardial infarction before primary PCI. J. Am. Coll. Cardiol. 67, 2705–2715 (2016). - PubMed
  214. Timmers, L. et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J. Am. Coll. Cardiol. 53, 501–510 (2009). - PubMed
  215. Alburquerque-Bejar, J. J. et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc. Res. 107, 246–254 (2015). - PubMed
  216. Lonborg, J. et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur. Heart J. 33, 1491–1499 (2012). - PubMed
  217. Kyhl, K. et al. A post hoc analysis of long-term prognosis after exenatide treatment in patients with ST-segment elevation myocardial infarction. EuroIntervention 12, 449–455 (2016). - PubMed
  218. Dominguez-Rodriguez, A. et al. Effect of intravenous and intracoronary melatonin as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: results of the melatonin adjunct in the acute myocardial infarction treated with angioplasty trial. J. Pineal Res. 62, e12374 (2017). - PubMed
  219. Hausenloy, D. J. et al. Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovasc. Res. 113, 1418–1419 (2017). - PubMed
  220. Galaup, A. et al. Protection against myocardial infarction and no-reflow through preservation of vascular integrity by angiopoietin-like 4. Circulation 125, 140–149 (2012). - PubMed
  221. Bouleti, C. et al. Angiopoietin-like 4 serum levels on admission for acute myocardial infarction are associated with no-reflow. Int. J. Cardiol. 187, 511–516 (2015). - PubMed
  222. Do Carmo, H., Arjun, S., Petrucci, O., Yellon, D. M. & Davidson, S. M. The caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc. Drugs Ther. 32, 165–168 (2018). - PubMed
  223. Vicencio, J. M. et al. Plasma exosomes protect the myocardium from ischemia–reperfusion injury. J. Am. Coll. Cardiol. 65, 1525–1536 (2015). - PubMed
  224. Davidson, S. M. et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc. Res. 115, 1156–1166 (2019). - PubMed
  225. Duncker, D. J. et al. Effect of temperature on myocardial infarction in swine. Am. J. Physiol. 270, H1189–H1199 (1996). - PubMed
  226. Gotberg, M. et al. Optimal timing of hypothermia in relation to myocardial reperfusion. Basic Res. Cardiol. 106, 697–708 (2011). - PubMed
  227. Yang, X. et al. Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res. Cardiol. 106, 421–430 (2011). - PubMed
  228. Dai, W., Hale, S. & Kloner, R. A. Delayed therapeutic hypothermia protects against the myocardial no-reflow phenomenon independently of myocardial infarct size in a rat ischemia/reperfusion model. Int. J. Cardiol. 236, 400–404 (2017). - PubMed
  229. Dixon, S. R. et al. Induction of mild systemic hypothermia with endovascular cooling during primary percutaneous coronary intervention for acute myocardial infarction. J. Am. Coll. Cardiol. 40, 1928–1934 (2002). - PubMed
  230. Erlinge, D. et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction (the CHILL-MI trial). J. Am. Coll. Cardiol. 63, 1857–1865 (2014). - PubMed
  231. Nichol, G. et al. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 8, e001965 (2015). - PubMed
  232. Shinlapawittayatorn, K. et al. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia–reperfusion injury. Heart Rhythm 10, 1700–1707 (2013). - PubMed
  233. Uitterdijk, A. et al. Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow. Basic Res. Cardiol. 110, 508 (2015). - PubMed
  234. Yu, L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520 (2017). - PubMed
  235. Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838 (2018). - PubMed
  236. Lecour, S. et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc. Res. 104, 399–411 (2014). - PubMed
  237. Hausenloy, D. J. et al. Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology working group on cellular biology of the heart. Cardiovasc. Res. 113, 564–585 (2017). - PubMed
  238. Jones, S. P. et al. The NHLBI-sponsored consortium for preclinical assessment of cardioprotective therapies (CAESAR): a new paradigm for rigorous, accurate, and reproducible evaluation of putative infarct-sparing interventions in mice, rabbits, and pigs. Circ. Res. 116, 572–586 (2015). - PubMed
  239. Rossello, X. et al. CIBER-CLAP (CIBERCV Cardioprotection Large Animal Platform): a multicenter preclinical network for testing reproducibility in cardiovascular interventions. Sci. Rep. 9, 20290 (2019). - PubMed
  240. Heusch, G., Skyschally, A. & Schulz, R. The in-situ pig heart with regional ischemia/reperfusion — ready for translation. J. Mol. Cell Cardiol. 50, 951–963 (2011). - PubMed
  241. Heusch, G. Cardioprotection research must leave its comfort zone. Eur. Heart J. 39, 3393–3395 (2018). - PubMed
  242. Ferdinandy, P., Hausenloy, D. J., Heusch, G., Baxter, G. F. & Schulz, R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol. Rev. 66, 1142–1174 (2014). - PubMed
  243. Kleinbongard, P., Botker, H. E., Ovize, M., Hausenloy, D. J. & Heusch, G. Co-morbidities and co-medications as confounders of cardioprotection — does it matter in the clinical setting? Br. J. Pharmacol. https://doi.org/10.1111/bph.14839 (2019). - PubMed
  244. Cohen, M. V. & Downey, J. M. The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Res. Cardiol. 112, 64 (2017). - PubMed
  245. Heusch, G. Reduction of infarct size by ischaemic post-conditioning in humans: fact or fiction? Eur. Heart J. 33, 13–15 (2012). - PubMed
  246. Heusch, G. & Gersh, B. J. Is cardioprotection salvageable? Circulation 141, 415–417 (2020). - PubMed
  247. Hausenloy, D. J. et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomized controlled trial. Lancet 370, 575–579 (2007). - PubMed
  248. Thielmann, M. et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382, 597–604 (2013). - PubMed
  249. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015). - PubMed
  250. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015). - PubMed
  251. Kottenberg, E. et al. Protection by remote ischaemic preconditioning during coronary artery bypass grafting with isoflurane but not with propofol anesthesia — a clinical trial. Acta Anaesthesiol. Scand. 56, 30–38 (2012). - PubMed
  252. Kottenberg, E. et al. Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 147, 376–382 (2014). - PubMed
  253. Andreadou, I. et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc. Res. 115, 1117–1130 (2019). - PubMed
  254. Hausenloy, D. J. et al. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc. Res. 115, 1167–1177 (2019). - PubMed
  255. Rossello, X. & Ibanez, B. Infarct size reduction by targeting ischemic injury: back to square one. Circ. Res. 122, 1041–1043 (2018). - PubMed
  256. Davidson, S. M. et al. Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 89–99 (2019). - PubMed
  257. Wei, M. et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ. Res. 108, 1220–1225 (2011). - PubMed
  258. Pryds, K. et al. Effect of long-term remote ischemic conditioning on inflammation and cardiac remodeling. Scand. Cardiovasc. J. 53, 183–191 (2019). - PubMed
  259. Pryds, K. et al. Effect of long-term remote ischemic conditioning in patients with chronic ischemic heart failure. Basic Res. Cardiol. 112, 67 (2017). - PubMed
  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03155022 (2019). - PubMed

Publication Types