Display options
Share it on

Cancers (Basel). 2020 Jul 15;12(7). doi: 10.3390/cancers12071909.

The Activity of KIF14, Mieap, and EZR in a New Type of the Invasive Component, Torpedo-Like Structures, Predetermines the Metastatic Potential of Breast Cancer.

Cancers

Tatiana S Gerashchenko, Sofia Y Zolotaryova, Artem M Kiselev, Liubov A Tashireva, Nikita M Novikov, Nadezhda V Krakhmal, Nadezhda V Cherdyntseva, Marina V Zavyalova, Vladimir M Perelmuter, Evgeny V Denisov

Affiliations

  1. Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia.
  2. Institute of Cytology, Russian Academy of Sciences, 194064 Saint Petersburg, Russia.
  3. Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia.
  4. Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia.
  5. Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia.

PMID: 32679794 PMCID: PMC7409151 DOI: 10.3390/cancers12071909

Abstract

Intratumor morphological heterogeneity reflects patterns of invasive growth and is an indicator of the metastatic potential of breast cancer. In this study, we used this heterogeneity to identify molecules associated with breast cancer invasion and metastasis. The gene expression microarray data were used to identify genes differentially expressed between solid, trabecular, and other morphological arrangements of tumor cells. Immunohistochemistry was applied to evaluate the association of the selected proteins with metastasis. RNA-sequencing was performed to analyze the molecular makeup of metastatic tumor cells. High frequency of metastases and decreased metastasis-free survival were detected in patients either with positive expression of KIF14 or Mieap or negative expression of EZR at the tips of the torpedo-like structures in breast cancers. KIF14- and Mieap-positive and EZR-negative cells were mainly detected in the torpedo-like structures of the same breast tumors; however, their transcriptomic features differed. KIF14-positive cells showed a significant upregulation of genes involved in ether lipid metabolism. Mieap-positive cells were enriched in genes involved in mitophagy. EZR-negative cells displayed upregulated genes associated with phagocytosis and the chemokine-mediated signaling pathway. In conclusion, the positive expression of KIF14 and Mieap and negative expression of EZR at the tips of the torpedo-like structures are associated with breast cancer metastasis.

Keywords: breast cancer; heterogeneity; invasion; metastasis; morphology; torpedo-like structures

References

  1. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14912-7 - PubMed
  2. Front Oncol. 2017 May 02;7:81 - PubMed
  3. Cell. 2011 Nov 23;147(5):992-1009 - PubMed
  4. J Clin Med. 2016 Apr 29;5(5): - PubMed
  5. J Clin Med. 2019 Jul 24;8(8): - PubMed
  6. Arch Med Res. 2009 May;40(4):321-3 - PubMed
  7. Acta Naturae. 2017 Jan-Mar;9(1):56-67 - PubMed
  8. J Clin Invest. 2015 May;125(5):1927-43 - PubMed
  9. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6740-5 - PubMed
  10. Oncogene. 2017 Sep 7;36(36):5189-5198 - PubMed
  11. Cancer Sci. 2017 May;108(5):809-817 - PubMed
  12. Bioinformatics. 2014 Apr 1;30(7):923-30 - PubMed
  13. Int J Oncol. 2016 Jun;48(6):2497-507 - PubMed
  14. Cell. 2017 Feb 9;168(4):670-691 - PubMed
  15. Nat Commun. 2015 Mar 27;6:6548 - PubMed
  16. Tumour Biol. 2014 Dec;35(12):12083-90 - PubMed
  17. Cancer Cell Int. 2020 May 19;20:175 - PubMed
  18. BMC Bioinformatics. 2013 Apr 15;14:128 - PubMed
  19. Nature. 2005 Jul 28;436(7050):518-24 - PubMed
  20. Appl Immunohistochem Mol Morphol. 2017 Jan;25(1):44-48 - PubMed
  21. J Cell Biol. 2006 Jan 30;172(3):363-72 - PubMed
  22. Trends Cell Biol. 2005 Sep;15(9):467-76 - PubMed
  23. Oncol Rep. 2015 Aug;34(2):952-60 - PubMed
  24. Mol Cancer Ther. 2018 Dec;17(12):2689-2701 - PubMed
  25. Nat Commun. 2014 Mar 03;5:3388 - PubMed
  26. Nat Rev Mol Cell Biol. 2009 Jul;10(7):445-57 - PubMed
  27. J Cell Biol. 2012 Dec 10;199(6):951-67 - PubMed
  28. Cancer Sci. 2019 Apr;110(4):1306-1316 - PubMed
  29. Nat Rev Mol Cell Biol. 2019 Feb;20(2):69-84 - PubMed
  30. Ann N Y Acad Sci. 2011 Jan;1217:191-206 - PubMed
  31. Cell. 2016 Jul 28;166(3):555-566 - PubMed
  32. Nat Rev Cancer. 2018 Feb;18(2):128-134 - PubMed
  33. Breast Cancer Res. 2019 Jan 24;21(1):12 - PubMed
  34. Oncogene. 2019 Nov;38(46):7113-7132 - PubMed
  35. Breast Cancer Res Treat. 2010 Oct;123(3):725-31 - PubMed
  36. Oncol Rep. 2015 Jul;34(1):165-74 - PubMed
  37. Genome Res. 2020 Jan;30(1):22-34 - PubMed
  38. PLoS One. 2011 Jan 17;6(1):e16060 - PubMed
  39. Hum Mol Genet. 2010 Jun 15;19(12):2421-32 - PubMed
  40. Genome Biol. 2010;11(10):R106 - PubMed
  41. Genome Biol. 2004;5(10):R80 - PubMed
  42. Nat Commun. 2020 Mar 24;11(1):1533 - PubMed
  43. Science. 2017 Aug 18;357(6352): - PubMed
  44. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  45. Mol Biol Cell. 2015 Oct 1;26(19):3464-79 - PubMed
  46. Int J Cancer. 2006 Sep 1;119(5):1088-94 - PubMed
  47. Nature. 2007 Apr 12;446(7137):765-70 - PubMed
  48. Life Sci. 2007 Apr 24;80(20):1873-81 - PubMed
  49. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  50. Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7867-7872 - PubMed
  51. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 - PubMed
  52. Front Oncol. 2020 Feb 19;10:50 - PubMed
  53. Mol Oncol. 2017 Jan;11(1):5-27 - PubMed
  54. Biores Open Access. 2013 Apr;2(2):148-54 - PubMed
  55. Clin Exp Metastasis. 2017 Oct;34(6-7):421-429 - PubMed
  56. Cell. 2016 Jun 30;166(1):21-45 - PubMed
  57. Oncotarget. 2017 May 19;8(37):61163-61180 - PubMed
  58. Oncogenesis. 2016 Jan 04;4:e181 - PubMed
  59. Int J Colorectal Dis. 2013 Jul;28(7):933-40 - PubMed

Publication Types

Grant support