Display options
Share it on

Oncogenesis. 2020 Jul 29;9(7):69. doi: 10.1038/s41389-020-00254-2.

The identification of nuclear αvβ3 integrin in ovarian cancer: non-paradigmal localization with cancer promoting actions.

Oncogenesis

Chen Seraya-Bareket, Avivit Weisz, Elena Shinderman-Maman, Sharon Teper-Roth, Dina Stamler, Nissim Arbib, Yfat Kadan, Ami Fishman, Debora Kidron, Evgeny Edelstein, Martin Ellis, Osnat Ashur-Fabian

Affiliations

  1. Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, 44821, Kfar-Saba, Israel.
  2. Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
  3. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
  4. Gynecologic Oncology Division, Department of Obstetrics and Gynecology, Meir Medical Center, 44821, Kfar Saba, Israel.
  5. Department of Pathology, Meir Medical Center, 44821, Kfar Saba, Israel.
  6. Translational Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, 44821, Kfar-Saba, Israel. [email protected].
  7. Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel. [email protected].

PMID: 32728020 PMCID: PMC7391722 DOI: 10.1038/s41389-020-00254-2

Abstract

Nuclear translocation of transmembrane proteins was reported in high-grade serous ovarian cancer (HGSOC), a highly aggressive gynecological malignancy. Although the membrane receptor αvβ3 integrin is amply expressed in HGSOC and involved in disease progression, its nuclear localization was never demonstrated. Nuclear αvβ3 was explored in HGSOC cells (OVCAR3, KURAMOCHI, and JHOS4), nuclear localization signal (NLS) modified β3 OVCAR3, Chinese hamster ovaries (CHO-K1) and human embryonic kidney (HEK293) before/after transfections with β3/β1 integrins. We used the ImageStream technology, Western blots (WB), co immunoprecipitations (Co-IP), confocal immunofluorescence (IF) microscopy, flow cytometry for cell counts and cell cycle, wound healing assays and proteomics analyses. Fresh/archived tumor tissues were collected from nine HGSOC patients and normal ovarian and fallopian tube (FT) tissues from eight nononcological patients and assessed for nuclear αvβ3 by WB, confocal IF microscopy and immunohistochemistry (IHC). We identified nuclear αvβ3 in HGSOC cells and tissues, but not in normal ovaries and FTs. The nuclear integrin was Tyr 759 phosphorylated and functionally active. Nuclear αvβ3 enriched OVCAR3 cells demonstrated induced proliferation and oncogenic signaling, intact colony formation ability and inhibited migration. Proteomics analyses revealed a network of nuclear αvβ3-bound proteins, many of which with key cancer-relevant activities. Identification of atypical nuclear localization of the αvβ3 integrin in HGSOC challenges the prevalent conception that the setting in which this receptor exerts its pleiotropic actions is exclusively at the cell membrane. This discovery proposes αvβ3 moonlighting functions and may improve our understanding of the molecular basis of ovarian cancer pathogenesis.

References

  1. Jayson, G. C., Kohn, E. C., Kitchener, H. C. & Ledermann, J. A. Ovarian cancer. Lancet 384, 1376–1388 (2014). - PubMed
  2. Perets, R. & Drapkin, R. It’s totally tubular….riding the new wave of ovarian cancer research. Cancer Res. 76, 10–17 (2016). - PubMed
  3. Wells, A. & Marti, U. Signalling shortcuts: cell-surface receptors in the nucleus? Nat. Rev. Mol. Cell Biol. 3, 697–702 (2002). - PubMed
  4. Maisel, S. & Schroeder, J. Wrong place at the wrong time: how retrograde trafficking drives cancer metastasis through receptor mislocalization. J. Cancer Metastasis Treat. 5, 7 (2019). - PubMed
  5. Xia, W. et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol. Carcinog. 48, 610–617 (2009). - PubMed
  6. Ohishi, Y. et al. Nuclear localization of E‐cadherin but not beta‐catenin in human ovarian granulosa cell tumours and normal ovarian follicles and ovarian stroma. Histopathology 58, 423–432 (2011). - PubMed
  7. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010). - PubMed
  8. Liapis, H., Adler, L. M., Wick, M. R. & Rader, J. S. Expression of alpha(v)beta3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Hum. Pathol. 28, 443–449 (1997). - PubMed
  9. Cruet-Hennequart, S. et al. alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22, 1688–1702 (2003). - PubMed
  10. Hapke, S. et al. Ovarian cancer cell proliferation and motility is induced by engagement of integrin alpha(v)beta3/Vitronectin interaction. Biol. Chem. 384, 1073–1083 (2003). - PubMed
  11. Cannistra, S. A., Ottensmeier, C., Niloff, J., Orta, B. & DiCarlo, J. Expression and function of beta 1 and alpha v beta 3 integrins in ovarian cancer. Gynecol. Oncol. 58, 216–225 (1995). - PubMed
  12. Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013). - PubMed
  13. Knowles, L. M. et al. Integrin αvβ3 and fibronectin upregulate Slug in cancer cells to promote clot invasion and metastasis. Cancer Res. 73, 6175–6184 (2013). - PubMed
  14. Reynolds, A. R. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 15, 392 (2009). - PubMed
  15. Lock, J. G. et al. Reticular adhesions are a distinct class of cell-matrix adhesions that mediate attachment during mitosis. Nat. Cell Biol. 20, 1290–1302 (2018). - PubMed
  16. Novak, M. et al. Stathmin 1 and p16INK4A are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma. Gynecol. Oncol. 139, 104–111 (2015). - PubMed
  17. Deshmukh, L., Meller, N., Alder, N., Byzova, T. & Vinogradova, O. Tyrosine phosphorylation as a conformational switch a case study of integrin β3 cytoplasmic tail. J. Biol. Chem. 286, 40943–40953 (2011). - PubMed
  18. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. gkw937 (2016). - PubMed
  19. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). Nature protocols. 14, 703–721 (2019). - PubMed
  20. Oliveros, J. C. Venny. An interactive tool for comparing lists with Venn’s diagrams. 2007–2015 (2007). - PubMed
  21. Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43, W566–W70 (2015). - PubMed
  22. Humphries, J. D., Chastney, M. R., Askari, J. A. & Humphries, M. J. Signal transduction via integrin adhesion complexes. Curr. Opin. Cell Biol. 56, 14–21 (2019). - PubMed
  23. Bouvard, D., Pouwels, J., De Franceschi, N. & Ivaska, J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell Biol. 14, 430 (2013). - PubMed
  24. Lin, H. Y. et al. Nuclear monomeric integrin alphav in cancer cells is a coactivator regulated by thyroid hormone. Faseb J. 27, 3209–3216 (2013). - PubMed
  25. Liu, S. et al. A small molecule induces integrin β4 nuclear translocation and apoptosis selectively in cancer cells with high expression of integrin β4. Oncotarget 7, 16282 (2016). - PubMed
  26. Mullany, L. K. et al. Specific TP53 mutants overrepresented in ovarian cancer impact CNV, TP53 activity, responses to nutlin-3a, and cell survival. Neoplasia 17, 789–803 (2015). - PubMed
  27. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl Acad. Sci. 96, 5522–5527 (1999). - PubMed
  28. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014). - PubMed
  29. Ghannam-Shahbari, D. et al. PAX8 activates a p53-p21-dependent pro-proliferative effect in high grade serous ovarian carcinoma. Oncogene 37, 2213–2224 (2018). - PubMed
  30. Mahipal, A. & Malafa, M. Importins and exportins as therapeutic targets in cancer. Pharmacol. Ther. 164, 135–143 (2016). - PubMed
  31. Hood, J. D. & Cheresh, D. A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2, 91–100 (2002). - PubMed
  32. Hood, J. D., Frausto, R., Kiosses, W. B., Schwartz, M. A. & Cheresh, D. A. Differential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis. J. cell Biol. 162, 933–943 (2003). - PubMed
  33. Madrazo, E., Conde, A. C. & Redondo-Muñoz, J. Inside the cell: Integrins as new governors of nuclear alterations? Cancers 9, 82 (2017). - PubMed
  34. Si, L. et al. MicroRNA-27a regulates the proliferation, chemosensitivity and invasion of human ovarian cancer cell lines by targeting Cullin 5. Arch. Biochem. Biophys. 668, 9–15 (2019). - PubMed
  35. Zhao, G. et al. Cullin5 deficiency promotes small-cell lung cancer metastasis by stabilizing integrin β1. J. Clin. Investig. 129, 972–987 (2019). - PubMed
  36. Teckchandani, A. & Cooper, J. A. The ubiquitin-proteasome system regulates focal adhesions at the leading edge of migrating cells. Elife 5, e17440 (2016). - PubMed
  37. Muthu, M., Cheriyan, V. T. & Rishi, A. K. CARP-1/CCAR1: a biphasic regulator of cancer cell growth and apoptosis. Oncotarget 6, 6499 (2015). - PubMed
  38. Sabatier, R. et al. A seven-gene prognostic model for platinum-treated ovarian carcinomas. Br. J. Cancer 105, 304–311 (2011). - PubMed
  39. Kim, J. H. et al. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol. Cell 31, 510–519 (2008). - PubMed
  40. Dietel, E., Brobeil, A., Gattenlöhner, S. & Wimmer, M. The importance of the right framework: mitogen-activated protein kinase pathway and the scaffolding protein PTPIP51. Int. J. Mol. Sci. 19, 3282 (2018). - PubMed
  41. Elad, N. et al. The role of integrin-linked kinase in the molecular architecture of focal adhesions. J. Cell Sci. 126, 4099–4107 (2013). - PubMed
  42. Acconcia, F., Barnes, C. J., Singh, R. R., Talukder, A. H. & Kumar, R. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. Proc. Natl Acad. Sci. 104, 6782–6787 (2007). - PubMed
  43. Savoy, R. M. & Ghosh, P. M. The dual role of filamin A in cancer: can’t live with (too much of) it, can’t live without it. Endocrine 20, R341–R56 (2013). - PubMed
  44. Federico, A. et al. Pan-cancer mutational and transcriptional analysis of the integrator complex. Int. J. Mol. Sci. 18, 936 (2017). - PubMed
  45. Ross, J. A. et al. Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis. Cell Death Dis. 10, 1–15 (2019). - PubMed
  46. Linxweiler, M., Schick, B. & Zimmermann, R. Let’s talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct. Target. Ther. 2, 1–10 (2017). - PubMed
  47. Di Ventura, B. & Kuhlman, B. Go in! Go out! Inducible control of nuclear localization. Curr. Opin. Chem. Biol. 34, 62–71 (2016). - PubMed
  48. Shinderman-Maman, E. et al. The thyroid hormone-alphavbeta3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene 35, 1977–1987 (2016). - PubMed
  49. Cohen, K., Ellis, M., Khoury, S., Davis, P. J., Hercbergs, A. & Ashur-Fabian, O. Thyroid hormone is a MAPK-dependent growth factor for human myeloma cells acting via alphavbeta3 integrin. Mol Cancer Res. 9, 1385–1394 (2011). - PubMed
  50. Kovács, K. A. et al. TORC1 is a calcium-and cAMP-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc. Natl Acad. Sci. 104, 4700–4705 (2007). - PubMed
  51. Consortium, G. O. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D8 (2016). - PubMed
  52. Brohee, S. & Van Helden, J. Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinform. 7, 488 (2006). - PubMed

Publication Types

Grant support