Display options
Share it on

iScience. 2020 Jul 24;23(7):101335. doi: 10.1016/j.isci.2020.101335. Epub 2020 Jul 01.

Temporal Coordination of Collective Migration and Lumen Formation by Antagonism between Two Nuclear Receptors.

iScience

Xianping Wang, Heng Wang, Lin Liu, Sheng Li, Gregory Emery, Jiong Chen

Affiliations

  1. State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China.
  2. State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China. Electronic address: [email protected].
  3. Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
  4. Institute for Research in Immunology and Cancer (IRIC) and Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC Canada.
  5. State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing 210061, China. Electronic address: [email protected].

PMID: 32682323 PMCID: PMC7366032 DOI: 10.1016/j.isci.2020.101335

Abstract

During development, cells undergo multiple, distinct morphogenetic processes to form a tissue or organ, but how their temporal order and time interval are determined remain poorly understood. Here we show that the nuclear receptors E75 and DHR3 regulate the temporal order and time interval between the collective migration and lumen formation of a coherent group of cells named border cells during Drosophila oogenesis. We show that E75, in response to ecdysone signaling, antagonizes the activity of DHR3 during border cell migration, and DHR3 is necessary and sufficient for the subsequent lumen formation that is critical for micropyle morphogenesis. DHR3's lumen-inducing function is mainly mediated through βFtz-f1, another nuclear receptor and transcription factor. Furthermore, both DHR3 and βFtz-f1 are required for chitin secretion into the lumen, whereas DHR3 is sufficient for chitin secretion. Lastly, DHR3 and βFtz-f1 suppress JNK signaling in the border cells to downregulate cell adhesion during lumen formation.

Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: Biological Sciences; Developmental Biology; Organizational Aspects of Cell Biology

Conflict of interest statement

Declaration of Interests The authors declare no competing financial interests.

References

  1. Cell. 1992 Oct 2;71(1):51-62 - PubMed
  2. Curr Biol. 2008 Apr 8;18(7):532-7 - PubMed
  3. Nat Cell Biol. 2009 May;11(5):569-79 - PubMed
  4. Nat Rev Mol Cell Biol. 2003 Jan;4(1):13-24 - PubMed
  5. Dev Cell. 2002 Aug;3(2):209-20 - PubMed
  6. Dev Biol. 2007 Jan 15;301(2):532-40 - PubMed
  7. Mech Dev. 2002 Feb;111(1-2):115-23 - PubMed
  8. Cell. 2000 Dec 22;103(7):1047-58 - PubMed
  9. Nat Cell Biol. 2013 Jan;15(1):17-27 - PubMed
  10. Dev Cell. 2014 Oct 27;31(2):171-87 - PubMed
  11. Development. 1995 Apr;121(4):1195-204 - PubMed
  12. J Biol Chem. 2016 Aug 26;291(35):18163-75 - PubMed
  13. Proteomics. 2015 Feb;15(4):725-38 - PubMed
  14. Dev Biol. 2014 Feb 15;386(2):408-18 - PubMed
  15. Curr Biol. 2006 Jan 24;16(2):180-5 - PubMed
  16. Development. 2013 Apr;140(8):1774-84 - PubMed
  17. Mol Endocrinol. 2003 Nov;17(11):2125-37 - PubMed
  18. Development. 1999 Oct;126(20):4581-9 - PubMed
  19. J Cell Sci. 2008 Nov 1;121(Pt 21):3649-63 - PubMed
  20. Cell. 2005 Jul 29;122(2):195-207 - PubMed
  21. Development. 1997 May;124(9):1757-69 - PubMed
  22. Dev Dyn. 2005 Mar;232(3):559-74 - PubMed
  23. J Biol Chem. 2017 Dec 29;292(52):21504-21516 - PubMed
  24. Development. 2006 Sep;133(18):3549-62 - PubMed
  25. G3 (Bethesda). 2016 Aug 09;6(8):2629-42 - PubMed
  26. Development. 2006 Jan;133(1):163-71 - PubMed
  27. Genes Cells. 1997 Sep;2(9):559-69 - PubMed
  28. Mol Cell Biol. 2014 Aug;34(16):3066-75 - PubMed
  29. Science. 1997 Apr 4;276(5309):114-7 - PubMed
  30. Dev Growth Differ. 2016 Jan;58(1):43-58 - PubMed
  31. Genetics. 2000 Mar;154(3):1203-11 - PubMed
  32. Development. 2003 Jan;130(2):271-84 - PubMed
  33. Exp Cell Res. 1993 Mar;205(1):171-8 - PubMed
  34. Genome Biol. 2005;6(12):R99 - PubMed
  35. Dev Biol. 1976 Dec;54(2):241-55 - PubMed
  36. J Morphol. 2005 Apr;264(1):117-30 - PubMed
  37. Nat Cell Biol. 2010 Nov;12(11):1035-45 - PubMed
  38. Cancer Res. 2012 Apr 1;72(7):1728-39 - PubMed
  39. Science. 2003 Sep 26;301(5641):1911-4 - PubMed
  40. Sci China Life Sci. 2015 Apr;58(4):379-89 - PubMed
  41. Genes Dev. 1990 Feb;4(2):204-19 - PubMed
  42. Curr Biol. 2010 Nov 23;20(22):2003-9 - PubMed
  43. Dev Cell. 2003 Jul;5(1):59-72 - PubMed
  44. J Cell Biol. 1988 Nov;107(5):1717-28 - PubMed
  45. Dev Cell. 2001 Oct;1(4):453-65 - PubMed
  46. Curr Biol. 2011 Feb 8;21(3):R126-36 - PubMed
  47. Curr Biol. 2008 Apr 8;18(7):538-44 - PubMed
  48. Development. 2005 Aug;132(15):3483-92 - PubMed
  49. Nat Rev Mol Cell Biol. 2014 Oct;15(10):665-76 - PubMed
  50. Cell Death Differ. 2006 Mar;13(3):454-64 - PubMed
  51. Dev Dyn. 2007 May;236(5):1213-26 - PubMed
  52. Cell. 1991 Oct 4;67(1):59-77 - PubMed
  53. G3 (Bethesda). 2013 Jul 08;3(7):1177-89 - PubMed
  54. Mech Dev. 2017 Dec;148:56-68 - PubMed
  55. Nat Rev Genet. 2001 Sep;2(9):690-701 - PubMed
  56. Annu Rev Entomol. 2016;61:177-96 - PubMed
  57. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17014-9 - PubMed
  58. Genome Res. 2009 Jun;19(6):1006-13 - PubMed
  59. Annu Rev Entomol. 2013;58:497-516 - PubMed
  60. Genes Dev. 2011 Jul 15;25(14):1476-85 - PubMed

Publication Types